Protective Effect of *Chlorella vulgaris* against Lead-Induced Oxidative Stress in Rat Brains

Hye-Jun Yun, a Inhye Kim, a, b Sung-Hee Kwon, a Ju-Seop Kang, c and Ae-Son Om* a

a Lab. of Food Safety & Toxicology, Dept. of Food & Nutrition, College of Human Ecology, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133–791, Korea, b Food Nutrition & Functionality Division, Dept. of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration, 160 Nokjiro, Gwonseon-gu, Suwon, Gyeonggi-do 441–853, Korea, and c Dept. of Pharmacology & Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133–791, Korea

(Received December 14, 2010; Accepted February 14, 2011)

Lead (Pb) is a toxic heavy metal widely distributed in the environment. Recent studies suggest oxidative stress as one possible mechanism involved in Pb poisoning. The unicellular algae *Chlorella vulgaris* (CV) contains various bioactive substances with antioxidant for the prevention of oxidative stress by metals. We investigated the protective effects of CV on the oxidative system in five groups of male Sprague-Dawley rats fed American Institute of Nutrition (AIN)-76 diet, plus 2, 5 or 10% CV for 4 weeks. All animals were exposed to 200 mg/l lead acetate by drinking water except for the control (tap water). Body weight gains were significantly reduced in the Pb-exposed group (64%) relative to the control and CV groups. Brain weights were significantly increased in the Pb-exposed group (44%) relative to the others. In the experimental period, food intake, water intake and Pb intake were not different among the groups. The levels of Pb (87%) in brain obtained from the Pb-exposed group were significantly increased compared to the other groups. The levels of oxidative stress parameters in the brain such as superoxide dismutase (36%), glutathione peroxidase (63%), and glutathione reductase (30%) were decreased in the Pb-exposed group relative to the control but markedly increased in the CV groups. The CV also significantly increased glutathione levels by approximately 1.7-fold over the Pb-exposed group, while the malondialdehyde concentration significantly decreased by approximately 47–71%. Based on these results, we found alterations in several indicators of oxidative stress of Pb intoxication, suggesting the antioxidant potential of CV. Therefore, CV may have protective effects on brain damage of low-level and short-term Pb exposure in the brains of rats.

Key words —— *Chlorella vulgaris*, lead toxicity, oxidative stress, antioxidant enzyme

INTRODUCTION

Lead (Pb) is an extensively used metal in applications such as batteries, paints and pigments in industries. The population may get exposed to lead by food and water contamination, and air pollution caused by industrial emission and gasoline containing lead compounds. 1) Lead-exposure occurs through the respiratory and gastrointestinal systems, and lead which is ingested and absorbed is stored mainly in soft tissues and bone. 2) Lead has deleterious effects on neurological, hematological, gastrointestinal, reproductive, circulatory, and immunological pathologies. 3) One of the major symptoms in lead poisoning is generally known to be brain damage. Furthermore, an exposure to lower levels of lead is often related to behavioral abnormalities, learning disabilities, hearing dysfunctions and impaired cognitive functions in experimental animals and humans. 4–9) Recent studies have reported that low-level lead exposure has a graded association with several diseases including components of oxidative stress. But the association between low level lead exposure and oxidative stress has not been explored systematically. 10) One possible molecular mechanism involved in lead neurotoxicity is the disruption of the prooxidant/antioxidant balance, 11–13) which can
lead to brain injury via oxidative damage to critical biomolecules such as lipids, proteins and DNA.14)

Oxidative stress is one of the important mechanisms of the toxic effects of lead.15–17) Several studies reported alternations in antioxidant enzyme activities such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), and changes in the concentrations of some antioxidant molecules such as glutathione (GSH) in lead-exposed animals.18, 19) SOD activity is an important component of the cellular antioxidant system that protects cells from the harmful effects of O$_2^-$ and its derivatives.20) Inhibition of SOD activity by Pb was also shown in an in vitro study where the authors indicated that this effect of Pb can lead to decreased scavenging of reactive oxygen species (ROS) and results in oxidative damage.21) Lead has a high affinity for sulphydryl (SH) groups, mercaptides are formed with the SH group of cysteine, and less stable complexes with other amino acid side chains.22) GSH is a tripeptide containing cysteine and its active group is represented by the SH groups of cysteine residue in the antioxidant cellular defense.23) Lead binds exclusively to the SH groups, which decrease the GSH levels.24) Glutathione reductase (GR) reduces oxidized GSH (GSSG) back to GSH and supports the antioxidant defense system indirectly.25) GR possesses a disulfide at its active site, which was suggested as a target for lead, resulting in the inhibition of the enzyme.26) GPx activity represents the first protective response for small adjustments in H$_2$O$_2$ concentrations under normal physiological conditions.20) Malondialdehyde (MDA) is a marker for the determination of lipid peroxidation. The protective role of antioxidant such as α-tocopherol, ascorbic acid and methionine is reducing the lipid peroxidation as evidenced by a decreased MDA concentration in the brain because of Pb-induced oxidative stress.27) Taking these findings together, it is suggested that oxidative stress, which is induced by lead, is recovered by natural antioxidants, such as ascorbic acid,28) epigallocatechin-3-gallate29) and plant extracts etc.30, 31)

Marine algae have the potential to improve the biochemical imbalances induced by various toxins associated with free radicals. The unicellular green algae Chlorella vulgaris (CV) contains many bioactive substances with medicinal properties.32) Some studies have demonstrated the antioxidant properties of Chlorella against various diseases, heavy metals and UV-B exposure.32–37) Biochemically, Chlorella contains many dietary antioxidants such as lutein, α-carotene, β-carotene, ascorbic acid and α-tocopherol and these bioactive compounds have the ability to scavenge free radicals.38–40) In recent studies, we reported that supplementation of CV has a potential role in preventing toxin-caused oxidative stress and cadmium-induced hepatotoxicity.41, 42)

The present study was performed to examine the oxidative stress damage in lead-exposed rat brains and the protective effect of CV in recovering from lead-induced toxicity as a food-based natural antioxidant. We investigated the effect of lead and CV on GSH, several antioxidant enzymes and MDA in the brains of the rats which had been exposed 200 mg/l lead acetate and CV.

MATERIALS AND METHODS

Chemicals —— Lead acetate [(C$_2$H$_3$O$_2$)$_2$Pb?H$_2$O, Pb] was obtained from Sigma-Aldrich Co. (St. Louis, MO, U.S.A.). CV, a strain of unicellular green algae, was provided by Daesang Wellife (Seoul, Korea). All other chemicals and solvents used for this study were the highest grade available.

Animals and Treatment —— Male Sprague-Dawley rats (6 weeks old) weighing approximately 145–170 g were obtained from Shizuoka Laboratory Center Inc. (Hamamatsu, Japan) and acclimated for 1 week prior to experimental use. The animals were randomly assigned into five groups (ten animals each) and fed one of the following diets and drinking water: American Institute of Nutrition (AIN)-76 diet (control diet) and tap water (control group, Control), AIN-76 diet and 200 mg/l lead acetate water (Pb-exposed group, Pb), and AIN-76 modified diet plus 2, 5 or 10% CV (CV water (control group, Control), AIN-76 diet and Pb+CV5, Pb+CV10). The dose level of Pb was designed as described by Jamieson et al.43) with modification. This concentration was chosen to produce a sub-clinical toxicity, as the dosage given for 10 weeks with a standard laboratory rat chow has shown not to produce significant alterations in hematopoiesis, histology and function.44) The compositions of the diets are provided in Table 1. After 4 weeks of treatment, animals were deprived of food for 12 hr and anesthetized by overexposure of CO$_2$. Brains were quickly removed, weighed, placed in ice-cold saline and stored at −20°C for further studies. Urine and feces samples were individually obtained in metabolic cages for 12 hr before sacrifice.
Preparation of Brain Extracts —— For measurement of antioxidant enzyme activities, GSH and lipid peroxidation, brain extracts were prepared. Briefly, a portion of brain tissue was homogenized in a sucrose buffer (0.25 M sucrose, 10 mM HEPES, 1 mM EDTA, pH 7.4) and the homogenate was centrifuged at 10000 × g for 15 min at 4°C. The supernatants were analyzed for GR activity, GPx activity, GSH and MDA concentration.

Measurement of SOD, GR and GPx Activities —— To measure the level of oxidative stress in the brains of the animals after treatment with lead, CV, or both, biomarkers related to oxidative stress were measured. SOD, GR and GPx activities were determined with commercial assay kits and procedures were performed according to the instructions of the manufacturer.

SOD activity was determined by the modified method of NADPH-phenazinemethosulphate-nitroblue tetrazolium formazan inhibition reaction spectrophotometrically using a commercial kit (SOD assay kit-WST, Dojindo Laboratories, Inc., Kumamoto, Japan). The activity of GR in brain homogenate was assayed using a commercially available GR Activity Assay Kit (NWK-GR01, Northwest Life Science Specialties, LLC., Vancouver, WA, U.S.A.). GPx activities were measured by the modified method according to Paglia and Valentine (1967) using a commercial kit (NKW-GPX01, Northwest Life Science Specialties, LLC.).

Estimation of GSH —— GSH concentration of the brain homogenate was determined, as described previously with some modification, by commercial available Assay Kits (NWK-GSH01, Northwest Life Science Specialties, LLC.), according to the manufacturer’s instructions.

Lipid Peroxidation —— The concentration of MDA in brain homogenate was measured, as described previously with some modification, using commercial available Assay Kits (NWK-MDA01, Northwest Life Science Specialties, LLC.), according to the manufacturer’s protocol.

Total Protein Determination —— The protein content of the supernatant was determined using a commercial protein assay kit (Bio-Rad Protein Assay Kit, Bio-Rad Laboratories, Inc., Richmond, CA, U.S.A.). Crystalline bovine serum albumin (BSA) was used for the standard curve. The concentration was measured using a spectrophotometer at 595 nm.

Statistical Analysis —— Data were expressed as means ± S.E. The results were analyzed for statistically significant experimental differences using one-way analysis of variance (ANOVA) and post-hoc Duncan’s multiple range tests. Differences were considered statistically significant at p-value < 0.05.
Table 2. Body Weight Gain and Brain Weight in Rats for 4 Weeks

<table>
<thead>
<tr>
<th>Groups</th>
<th>Body weight Gain (g)</th>
<th>Brain weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute (g)</td>
<td>Relative (g)</td>
</tr>
<tr>
<td>Control</td>
<td>122.88 ± 2.92</td>
<td>1.73 ± 0.04</td>
</tr>
<tr>
<td>Pb</td>
<td>44.80 ± 3.32</td>
<td>1.67 ± 0.07</td>
</tr>
<tr>
<td>Pb + CV2</td>
<td>121.44 ± 3.54</td>
<td>1.78 ± 0.05</td>
</tr>
<tr>
<td>Pb + CV5</td>
<td>125.14 ± 3.45</td>
<td>1.91 ± 0.04</td>
</tr>
<tr>
<td>Pb + CV10</td>
<td>126.50 ± 4.65</td>
<td>1.82 ± 0.04</td>
</tr>
</tbody>
</table>

All values are means ± S.E. (n = 10). Control (Pb free drinking water + control diet); Pb (drinking water containing 200 mg/l Pb + control diet); Pb + CV2 (drinking water containing 200 mg/l Pb + 2% chlorella diet); Pb + CV5 (drinking water containing 200 mg/l Pb + 5% chlorella diet); Pb + CV10 (drinking water containing 200 mg/l Pb + 10% chlorella diet).

* Brain weight/100 g body weight. ** Values are significantly different among columns at p-values < 0.05 by Duncan’s multiple range tests. a, b Values with different letters are significantly different among columns at p-values < 0.05 by Duncan’s multiple range tests.

Table 3. Food, Water and Lead Intake in Rats for 4 Weeks

<table>
<thead>
<tr>
<th>Groups</th>
<th>Food intake (g/day)</th>
<th>Water intake (g/day)</th>
<th>Lead intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21.72 ± 1.34</td>
<td>23.33 ± 0.11</td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>19.78 ± 1.42</td>
<td>23.23 ± 0.12</td>
<td>4.64 ± 0.03</td>
</tr>
<tr>
<td>Pb + CV2</td>
<td>21.18 ± 0.83</td>
<td>23.38 ± 0.78</td>
<td>4.68 ± 0.17</td>
</tr>
<tr>
<td>Pb + CV5</td>
<td>20.86 ± 0.70</td>
<td>23.32 ± 0.82</td>
<td>4.66 ± 0.15</td>
</tr>
<tr>
<td>Pb + CV10</td>
<td>20.92 ± 0.44</td>
<td>23.00 ± 0.71</td>
<td>4.58 ± 0.13</td>
</tr>
</tbody>
</table>

All values are means ± S.E. (n = 10). Control (Pb free drinking water + control diet); Pb (drinking water containing 200 mg/l Pb + control diet); Pb + CV2 (drinking water containing 200 mg/l Pb + 2% chlorella diet); Pb + CV5 (drinking water containing 200 mg/l Pb + 5% chlorella diet); Pb + CV10 (drinking water containing 200 mg/l Pb + 10% chlorella diet). * Non-significant.

RESULTS

Changes in Body Weight Gain, Brain Weight, Food, Water and Lead Intake

Body weight gains and the brain weights of the rats are presented in Table 2. A significant decrease was observed for the Pb-exposed group (44.80 ± 3.32 g) when compared to the control (122.88 ± 2.92 g), Pb + CV2 (121.44 ± 3.54 g), Pb + CV5 (125.14 ± 3.45 g) and Pb + CV10 (126.50 ± 4.65 g) groups. The absolute brain weight of the Pb-exposed group (1.67 ± 0.07 g) was significantly lower than the Pb + CV5 (1.91 ± 0.04 g) group. However, the relative brain weight of the Pb-exposed group was significantly higher than the control (0.50 ± 0.01 g), Pb + CV2 (0.48 ± 0.15 g), Pb + CV5 (0.50 ± 0.08 g) and Pb + CV10 (0.48 ± 0.15 g) groups. As shown in Table 3, the food, water and lead intakes for 4 weeks were not significantly different among the groups.

Concentrations of Lead in Tissues, Urine and Feces

The lead concentrations in brain, urine and feces of rats are listed Table 4. The brain lead level in the Pb-exposed group (92.46 ± 8.02 µg/g wet weight) was significantly higher than in the control (49.14 ± 2.53 µg/g wet weight). In contrast, the brain lead levels were significantly reduced in the Pb + CV2 (47.81 ± 3.31 µg/g wet weight), Pb + CV5 (47.00 ± 4.70 µg/g wet weight) and Pb + CV10 (51.60 ± 5.85 µg/g wet weight) groups compared with the Pb-exposed group. Urinary lead levels had no significant differences in between Pb and Pb + CV groups. The lead concentrations of liver and kidney in the Pb-exposed group were shown significant increases compared to the control. On the other hand, the liver lead concentrations were significantly decreased in the Pb + CV5 and Pb + CV10 supplemented groups compared with the Pb-exposed groups. The lead levels in kidney were also shown significant decreases in the Pb + CV5 and Pb + CV10 supplemented groups compared to the Pb-exposed groups. There were significant differences in the
were significantly elevated compared with the control while its activities in the CV-treated groups in the Pb-exposed group in comparison with the group. GR activities were significantly decreased in the Pb+CV groups compared with Pb-exposed group. In contrast, these parameters were highly increased to about 50% that of the control group. GPx activity in the Pb-exposed group was markedly decreased compared to the control, whereas that of the CV-treated animals was markedly increased of the CV2 and CV5 in rats, the MDA levels showed a reversal to near to the control level, and this parameter in the Pb+CV10 group represented in Fig. 2. The MDA concentration levels in the Pb-exposed group (3.75 ± 0.16 µM/mg protein) when compared with the control (2.46 ± 0.50 µM/mg protein). In contrast, the level was significantly higher in the Pb+CV groups (Pb+CV2: 4.82 ± 0.45 µM/mg protein, Pb+CV5: 5.40 ± 0.37 µM/mg protein, Pb+CV10: 5.62 ± 0.73 µM/mg protein) than in the Pb-exposed group.

Fecal lead levels

Fecal lead levels between the control and Pb-exposed groups (control: 0.45 ± 0.13 mg/g feces, Pb-exposed group: 13.70 ± 0.84 mg/g feces). Fecal lead levels in the Pb+CV5 and Pb+CV10 groups were not increased compared with the Pb-exposed group, while that in the Pb+CV2 (21.04 ± 0.52 mg/g feces) group was significantly increased relative to the Pb-exposed group.

Antioxidant Enzyme Activities in the Brains of Rats

Table 5 listed the selected parameters (SOD, GPx and GR) related to oxidative stress in the brain. SOD activity of the Pb-exposed group was slightly decreased compared to the control, whereas that of the CV-treated animals was markedly increased when compared with the Pb-exposed group. GPx activity in the Pb-exposed group was markedly decreased to about 50% that of the control group. In contrast, these parameters were highly increased in the Pb+CV groups compared with Pb-exposed group. GR activities were significantly decreased in the Pb-exposed group in comparison with the control while its activities in the CV-treated groups were significantly elevated compared with the control and Pb-exposed group.

GSH Level in Brain

As shown in Fig. 1, a significant decrease of the GSH level was observed in the Pb-exposed group (2.80 ± 0.42 µM/mg protein) compared to the control (5.24 ± 0.67 µM/mg protein). In contrast, the level was significantly higher in the Pb+CV groups (Pb+CV2: 4.82 ± 0.45 µM/mg protein, Pb+CV5: 5.40 ± 0.37 µM/mg protein, Pb+CV10: 5.62 ± 0.73 µM/mg protein) than in the Pb-exposed group.

Lipid Peroxide (LPO) Level in Brain

The MDA level in brain, an end product indicative of the extent of lipid peroxidation, is represented in Fig. 2. The MDA concentration levels in the brains were significantly increased in the Pb-exposed group (3.75 ± 0.16 µM/mg protein) when compared with the control (2.46 ± 0.50 µM/mg protein). On the other hand, following the supplementation of CV2 and CV5 in rats, the MDA levels showed a reversal to near to the control level, and this parameter in the Pb+CV10 group

Table 4. Lead Concentration in Tissues, Urine and Feces

<table>
<thead>
<tr>
<th>Groups</th>
<th>Brain (µg/g wet weight)</th>
<th>Liver (µg/g wet weight)</th>
<th>Kidney (µg/g wet weight)</th>
<th>Urine (µg/ml)</th>
<th>Feces (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>49.14 ± 2.53<sup>a</sup></td>
<td>5.05 ± 0.02<sup>b</sup></td>
<td>31.27 ± 2.97<sup>c</sup></td>
<td>0.07 ± 0.01<sup>c</sup></td>
<td>0.45 ± 0.13<sup>c</sup></td>
</tr>
<tr>
<td>Pb</td>
<td>92.46 ± 8.02<sup>a</sup></td>
<td>50.12 ± 7.54<sup>a</sup></td>
<td>175.53 ± 8.45<sup>a</sup></td>
<td>0.70 ± 0.31<sup>a</sup></td>
<td>13.70 ± 0.84<sup>b</sup></td>
</tr>
<tr>
<td>Pb + CV2</td>
<td>47.81 ± 3.31<sup>b</sup></td>
<td>48.11 ± 6.47<sup>b</sup></td>
<td>169.26 ± 8.74<sup>b</sup></td>
<td>0.90 ± 0.59<sup>b</sup></td>
<td>21.04 ± 0.52<sup>b</sup></td>
</tr>
<tr>
<td>Pb + CV5</td>
<td>47.00 ± 4.70<sup>b</sup></td>
<td>31.42 ± 5.36<sup>b</sup></td>
<td>115.95 ± 9.63<sup>b</sup></td>
<td>0.49 ± 0.35<sup>b</sup></td>
<td>14.93 ± 2.30<sup>a</sup></td>
</tr>
<tr>
<td>Pb + CV10</td>
<td>51.60 ± 5.85<sup>b</sup></td>
<td>25.81 ± 4.87<sup>b</sup></td>
<td>134.57 ± 7.81<sup>b</sup></td>
<td>0.68 ± 0.44<sup>b</sup></td>
<td>12.60 ± 1.17<sup>b</sup></td>
</tr>
</tbody>
</table>

All values are means ± S.E. (<i>n</i> = 10). Control (Pb free drinking water + control diet); Pb (drinking water containing 200 mg/l Pb + control diet); Pb + CV2 (drinking water containing 200 mg/l Pb + 2% chlorella diet); Pb + CV5 (drinking water containing 200 mg/l Pb + 5% chlorella diet); Pb + CV10 (drinking water containing 200 mg/l Pb + 10% chlorella diet). <i>a</i>, <i>b</i>, <i>c</i> Values with different letters are significantly different among columns at <i>p</i>-values < 0.05 by Duncan’s multiple range tests.

Table 5. Antioxidant Enzyme Activities in the Brains of Rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD (U/mg protein)</th>
<th>GPx (mU/100 mg protein)</th>
<th>GR (mU/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>17.71 ± 2.68<sup>b</sup></td>
<td>2.21 ± 0.86<sup>b</sup></td>
<td>33.04 ± 3.40<sup>b</sup></td>
</tr>
<tr>
<td>Pb</td>
<td>11.74 ± 3.14<sup>b</sup></td>
<td>0.81 ± 0.24<sup>b</sup></td>
<td>23.52 ± 5.42<sup>b</sup></td>
</tr>
<tr>
<td>Pb + CV2</td>
<td>21.28 ± 3.81<sup>b</sup></td>
<td>2.04 ± 0.42<sup>b</sup></td>
<td>46.38 ± 9.10<sup>b</sup></td>
</tr>
<tr>
<td>Pb + CV5</td>
<td>21.99 ± 3.18<sup>b</sup></td>
<td>3.76 ± 0.88<sup>c</sup></td>
<td>99.74 ± 3.52<sup>b</sup></td>
</tr>
<tr>
<td>Pb + CV10</td>
<td>26.77 ± 3.94<sup>b</sup></td>
<td>4.21 ± 0.47<sup>c</sup></td>
<td>66.36 ± 7.14<sup>b</sup></td>
</tr>
</tbody>
</table>

All values are means ± S.E. (<i>n</i> = 10). Control (Pb free drinking water + control diet); Pb (drinking water containing 200 mg/l Pb + control diet); Pb + CV2 (drinking water containing 200 mg/l Pb + 2% chlorella diet); Pb + CV5 (drinking water containing 200 mg/l Pb + 5% chlorella diet); Pb + CV10 (drinking water containing 200 mg/l Pb + 10% chlorella diet). <i>a</i>, <i>b</i>, <i>c</i> Values with different letters are significantly different among columns at <i>p</i>-values < 0.05 by Duncan’s multiple range tests.
The present study investigated the lead-induced oxidative stress and antioxidant ability of CV in the brains of rats which were given a low-level exposure to lead acetate for 4 weeks. A significant decrease in body weight gain was observed in the Pb-exposed group compared with the control. Our results were in agreement with measurements described by Jamieson et al., who stated that the weights of the rats which received treatments with 200 mg/l lead for 3 weeks were significantly decreased. However, rats that were fed with CV recovered their body weights to that of the control within 4 weeks, although food, water consumption and lead exposure levels were not different among the groups. The lead concentration in the tissues (brain, liver and kidney) of the Pb-exposed group was significantly higher than of the control group. However, a decrease of lead concentration in tissues (brain, liver and kidney) was shown in the CV-fed groups. An increase in the fecal lead concentration was also observed in the CV-fed groups relative to the Pb-exposed group. The data from our studies indicated CV supplementation caused the recovery of body weight gains, inhibited bioaccumulation in tissue and prompted lead excretion into the feces. There are several lead-nutrient interactions that have been studied and supported by experimental evidence, in which the nutritional factors have been demonstrated to have an impact on health outcomes following lead exposure. CV is known to contain various nutritional ingredients such as 13.7% carbohydrate, 61.6% proteins, 12.5% fat, 9–18% dietary fiber, trace elements (selenium, zinc, calcium and magnesium) and vitamins (thiamine, B1, B2, ascorbic acid, D, E and K).

Lead-induced disruption of the prooxidant/antioxidant balance in the brain could induce injury via oxidative damage to critical biological macromolecules. Oxidative damage is considered a major cause of lead-induced brain damage, because the brain is believed to be particularly vulnerable to oxidative stress due to the high rate of oxygen free radical generation without commensurate levels of antioxidant defenses. Generation of highly ROS, such as superoxide radicals (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), hydroxyl radicals (·OH) and LPO, in the result of heavy metal ions are known to damage various cellular components including proteins, membrane lipids and nucleic acids. In
Antioxidant enzymes such as SOD, GPx, and GR are supposed to be the primary defenses that prevent biological macromolecules from oxidative damage. SOD is the most important line of the antioxidant enzyme defense system against ROS and, in particular, superoxide anion radicals. Moreira et al. (2001) demonstrated that brain antioxidant defenses (SOD and GPx) from individuals exposed to Pb decreased significantly. In our study, SOD activity tends to be decreased in the brain after Pb exposure, while in CV-treated groups it had increased. GPx needs GSH to decompose H_2O_2 or other peroxides with the simultaneous oxidation of GSH into GSSG. GPx is a potential target for lead toxicity because a lead-associated reduction in the selenium uptake may increase the susceptibility of cells to oxidative stress. An antagonistic effect between selenium and Pb was found to affect GPx activity that requires selenium as a cofactor. Wang et al. (2006) described that the GPx activity of mouse brains was decreased in the Pb-exposure group compared with the control group. Similar results were found in our study; GPx activities in the Pb-exposed group were decreased relative to the groups fed 5 and 10% CV. GR, another component of the antioxidant defense system, reduces GSSG back to GSH and thereby supports the antioxidant defense system indirectly. GR possesses a disulfide at its active site that was suggested as a target for lead, resulting in the inhibition of the enzyme. The inhibition results in a decrease in the GSH/GSSG ratio that renders cells more susceptible to oxidative damage. Moreira et al. (2001) have reported that the effect of lead exposure induced a decrease in the activity of GR. Our study has shown that GR activity in the brain of the Pb-exposed group was lower than in the control, while GR activity increased in the 5 and 10% CV groups in comparison with the Pb-exposed group.

GSH is synthesized in the cytoplasm of the liver cells and then distributed through the circulatory/transport system into different organs. GSH plays a crucial role in both scavenging ROS and in the detoxification of chemical compounds. Therefore, perturbation in the redox status of GSH cannot only impair cell defenses against toxic compounds, but also result in enhanced oxidative stress and tissue injury. Lead has a very high affinity for SH groups and therefore results in a lead-exposed decrease in GSH levels. We also observed that a significant decrease (87.1%) of the GSH level was observed in the Pb-exposed group relative to the control, and an increase in the GSH level was shown in the administration of CV. Similarly, Aykin-Burns et al. (2003) described that GSH levels in the brains of Pb-treated groups were found to be lower than in the control. However, the concurrent treatment of Chlorella prevented GSH depletion, indicating the activity of a protective antioxidant.

A number of in vitro and in vivo studies have shown that a significant increase of the MDA level is correlated with an increase in the lead exposure. Pande et al. (2001) demonstrated that, by means of a certain antioxidant supply, the production of MDA was reduced by 30–40%. In agreement with these research results, we observed that lipid peroxidation is amplified (52.0%) in the brain after exposure to lead. However, the MDA level of rats that were fed the CV mixed diet was interestingly significant decreased compared to the Pb-exposure group.

In conclusion, our study showed that the administration of CV is capable of reducing free radical damage by directly acting as a free radical scavenger and by indirectly stimulating antioxidant enzyme activities when animals were given a sub-chronic low-level exposure to lead. Based on the results obtained from this study, an increase of antioxidant abilities is expected when animals are given CV simultaneously to lead exposure. The protective effects of CV against lead-induced toxicity may be due to various bioactive ingredients in CV, which react with various ROS as well as inhibits oxidation processes in lipids and in the cellular compartment. Further studies are required to confirm and to better understand the underlying molecular mechanisms for the protective effect of CV.

Acknowledgements This study was supported by the research fund of HYU (HYU-2008-T), Hanyang University.

REFERENCES

30. Kharoubi, O., Slimani, M., Krouf, D., Seddik, L.

