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Oxidative Stress-Dependent Cellular Toxicity and
Cytoprotection during Exposure to 9,10-phenanthraquinone,
a Component of Diesel Exhaust Particles
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Quinones are ubiquitously present in the environment. This review summarizes the cellular toxicity of 9,10-
phenanthraquinone (9,10-PQ), a component of diesel exhaust particles, and the cytoprotective mechanism of the
nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system against ox-
idative stress exerted by 9,10-PQ.
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INTRODUCTION

Epidemiologic studies show that long exposure
to airborne particulate matter resulting from the
combustion of fossil fuels correlates closely with
the incidence of cancer and respiratory and car-
diovascular diseases. Complexes consisting of a
huge number of chemicals make identification of
the causative chemicals difficult. However, the re-
sults of many studies support the idea that oxida-
tive stress contributes to the disorders caused by
airborne particle matter. Therefore we focused on
components that have the ability to exert oxidative
stress in diesel exhaust particles (DEP), which ac-
count for a large majority of airborne particle mat-
ter. Half of the organic phase of DEP extracted
with dichloromethane consists of chemicals derived
from phenanthrene, a three-ring polycyclic aromatic
hydrocarbon (PAH). Since a one-electron reduction
potential value of 9,10-phenanthraquinone (9,10-
PQ) was found to be −124 mV, this o-quinone de-
rived from phenanthrene appears to act as an effi-
cient electron acceptor, resulting in the production
of reactive oxygen species (ROS) in cells.1)
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OXIDATIVE STRESS CAUSED BY
9,10-PQ

Quinones are produced from PAH by pho-
tooxodation2) or by biological metabolism.3) PAHs
are oxidized to anti-diol-epoxides through PAH
trans-dihydrodiols by cytochrome P450s (CYP) and
epoxide hydrolase. PAH trans-dihydrodiols are
converted to quinones through dihydroquinones by
dihydrodiol dehydrogenases (aldo-keto reductases;
AKRs). PAH quinones are reduced to dihydro-
quinones through semiquinone radicals. Quinones
ubiquitously exist as biological factors (e.g., coen-
zyme Q in the electron transport chain) or as envi-
ronmental chemicals.

Quinones are electron acceptors that easily react
with biological nucleophiles such as proteins, lipids,
or DNA. The chemical effects of quinones on pro-
teinous thiols are generally either covalent binding
and/or redox cycling. 9,10-PQ exclusively under-
gos redox cycling with thiols, but interestingly not
with monothiols but with dithiols.4) A thiol is con-
tained in a proteinous cysteine residue. As biolog-
ical dithiols, the antioxidative protein thioredoxin
or the intracellular antioxidant α-dihydrolipoic acid
should be target molecules of 9,10-PQ. The redox
cycling of 9,10-PQ is identified by detecting the
production of superoxide and the one-electron re-
ducing form, the semiquinone radical (9,10-PQ·−),
consumption of thiols and molecular oxygen, and
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a constant amount of 9,10-PQ.5) The production of
superoxide exceeds the expected amount of stoi-
chiometry. Superoxide is easily converted to hydro-
gen oxide or hydroxyl radical. Propagation of these
ROS is thought to be a potent cause of oxidative
stress by 9,10-PQ. 9,10-PQ oxidized cellular pro-
teins and led to cell death.5, 6)

DETOXIFICATION PATHWAY OF
9,10-PQ

In the detoxification of 9,10-PQ, quinones must
be reduced to dihydroquinones to conjugate with
glutathione, glucuronic acid, or sulfate. At least
two types of enzyme need to be cooperatively
involved in two-electron reduction and conjuga-
tion. Representative two-electron reductases are
NAD(P)H:quinone reductase (NQO1) and AKRs
isozymes. Some dihydroquinones are stable and
inactive, although others are not. 9,10-PQH2 is
classified as the latter, a group of unstable di-

hydroquinones. In terms of chemical properties,
9,10-PQH2 is as powerful as 9,10-PQ. When cells
are exposed to 9,10-PQ, a product is excreted
into the extracellular space. An unknown prod-
uct of 9,10-PQ was identified as monoglucuronide
of 9,10-dihydroxyphenanthrene (PQHG) by com-
parison with an authentic sample.7) This ultimate
metabolite lost the ability to exert oxidative stress
like 9,10-PQ because it could not undergo redox
cycling. Taken together, the results show that glu-
curonidation of 9,10-PQH2 occurs using uridine
5′-diphosphate glucuronosyltransferase (UGT), fol-
lowed by two-electron reduction of 9,10-PQ.

CYTOPROTECTION BY THE
TRANSCRIPTION FACTOR Nrf2

Nuclear factor erythroid 2-related factor 2
(Nrf2) is a transcription factor that belongs to the
cap‘n’collar (CNC) family. The molecular mech-
anisms of Nrf2 activation have been well charac-

Fig. 1. Toxification and Detoxification Pathways of 9,10-PQ and the Nrf2/Keap1 System
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terized.8) In unstressed conditions, Nrf2 is rapidly
degraded through the ubiquitin-proteasome system
by Kelch-like ECH-associated protein 1 (Keap1)-
Cullin3 E3 ligase. The half-life of the protein is
approximately 20 min. DLG (weak site) and ETGE
(strong site) motifs in Nrf2 are recognized and re-
tained by the DC domain of Keap1. A “hinge and
latch model” was proposed.9) The cytoplasmic pro-
tein Keap1 has 25 cysteines in a molecule. Some
of the reactive thiols are targets of a variety of
chemicals.10) Such modification of the Keap1 thiols
causes activation of Nrf2, as confirmed by nuclear
localization from the cytoplasm of this transcrip-
tion factor. Diethyl malate (DEM), tert-butyl hydro-
quinone (tBHQ), and sulforaphane (an ingredient of
broccoli sprouts) are known to be typical Nrf2 acti-
vators. These chemicals are electrophiles that react
with cysteine residues in Keap1. In cellular experi-
ments, 9,10-PQ also activates Nrf2 at a weakly toxic
dose to the same extent as DEM (Taguchi et al.,
unpublished data). Some cells exposed to 9,10-PQ
activate Nrf2 to upregulate the downstream genes.
Although the mechanism by which 9,10-PQ acti-
vates Nrf2 remains to be elucidated, we speculate
that 9,10-PQ directly reacts with proximal thiols in
Keap1 as reported previously4) or ROS during re-
dox cycling of 9,10-PQ in the cells5) might oxidize
Keap1 thiols, thereby dissociating Nrf2 from Keap1
(Fig. 1). Some Nrf2-target gene products contribute
to the detoxification of 9,10-PQ, such as NQO1,
AKRs, and UGTs, and to antioxidation, such as
heme oxygenase-1 (HO-1) and glutamate-cysteine
ligase catalytic subunit (GCLC). Furthermore, 9,10-
PQ exhibits weaker toxicity in primary hepatocytes
isolated from hepatocyte-specific Keap1 conditional
knockout mice with constitutively activated Nrf2
compared with wild-type mice, suggesting that Nrf2
activation plays a protective role in PQ toxicity.

UPDATE ON THE NRF2/KEAP1
SYSTEM

Since the identification of the Nrf2/Keap1 sys-
tem, a number of papers have reported that Nrf2 ac-
tivation can be utilized to protect against chemicals
and oxidative stress-related diseases.11) One notable
finding is that Nrf2 or Keap1 mutations are found in
cancer patients or cancer cell lines.12–16) These mu-
tations are sufficient to lead to constitutive Nrf2 ac-
tivation. Nrf2/Keap1 researchers all over the world

are investigating the double-edged sword of Nrf2.17)
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