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Here we show a quantitative, spatial interpreta-
tion of influenza propagation process in Tokyo and its
environs in the season from November 1st, 2004 to Oc-
tober 31st, 2005. The time lags (day) of influenza propa-
gation between distant sites are calculated by the cross-
correlation functions of the daily variations in the
amount of drug sale at community pharmacies. The
influenza infection appears to have spread from the
urban area of Tokyo to its suburbs in the season of
2004–05. From the time lags and distances of the phar-
macy locations, the mean propagation speed is esti-
mated to be 3.5 km/day.
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INTRODUCTION

The importance of the spatial structure of dis-
ease propagation in human and other populations

has been recognized ever since John Snow identi-
fied the source of cholera outbreak by mapping the
cases in 1854 for the city of London.1–12) Ordinarily,
the pattern of infection spread is visualized on a map
and understood by techniques such as choropleth
maps and geographic information systems.1–7)

Recently, a method for estimating the route and
speed of influenza propagation was proposed.13–15)

A cross-correlation functions, often encountered in
spectral analysis, is used for this purpose. In gen-
eral, the function gives the time lag of similar or
correlated phenomena which occur in distant
places.16) A typical application is to a meteorologi-
cal problem about the time needed for rainwater to
move from a mountain to downstream lake. Because
of the definite causality between the phenomena
(precipitation and inflow volume), the cross-corre-
lation function between them provides an estimate
of the arrival time.

Similarly, the route and speed of influenza propa-
gation were estimated by the cross-correlation func-
tion of the time series of drug sales at distant phar-
macies under the assumption that the health condi-
tions of people are reflected by the drug sales at a
pharmacy of the area where they live.13,14)

However, the previous study13,14) collected the
information from the minimum number of pharma-
cies (three) and the estimated propagation route and
speed are no more than a mere application of the
new proposition. Here, we use the information from
fourteen pharmacies in Tokyo and its environs in
the season of 2004–05 for the same purpose. The
most prominent features of our study are the math-
ematical technique and sources of disease informa-
tion, i.e., the cross-correlation functions and phar-
macies. Because of the nature of the information,
our study does not violate the Act on the Protection
of Personal Information.

MATERIALS AND METHODS

The information about the prescriptions of in-
fluenza drugs was offered by the pharmacies, a–n,
listed in Table 1. Pharmacy i is located near an emer-
gency hospital and the other pharmacies are near
general clinics (but not emergency ones). The phar-
macy data were available throughout the year, in-
cluding those of weekends as well.
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RESULTS AND DISCUSSION

Figures 1A and 1B show the daily variations in
the sales amount of Tamiflu® capsules (Chugai Phar-
maceutical, Tokyo, Japan) at the pharmacies which
are about 25 km away (see i and m in Figure 2). The
fluctuation which looks like spike noises with a heb-
domadal cycle comes mainly from the life style of
people in the society. However, these “gnoises” are
eliminated from the cross-correlation function (C)
by the moving average method with a window of
seven days.15)

The daily variations (A and B) are similar in pat-
tern, but do not synchronize. In this case, the cross-
correlation function is helpful to know the time lag
between the phenomena.13) Figure 1C is the plot of
the correlation coefficients between time series, A(t)
and B(t + τ), as a function of τ (also see Table 1):16)

Here, A(t) denotes the daily variation of Fig. 1A and
B(t) that of Fig. 1B. The cross-correlation function
(C) has the maximum when τ = 7 days. This means
that the correlation is the strongest, when one phe-
nomenon, B(t + τ), is shifted by seven days. There-
fore, the maximum position of the plot means the
time lag. Because of the causality of drug sales and
disease, we can safely say that that the influenza in-
fection around the pharmacy of Fig. 1B lags seven
days behind that of Fig. 1A.

This paper takes fourteen pharmacies as a local
network (for locations, see a–n of Fig. 2). Then, the
total number of cross-correlation functions is sup-

Table 1. Time Lags (day) between the Sales of Tamiflur Capsules at Pharmacies a–n

A(t) B(t) Mean Relative

a b c d e f g h i j k l m n Lag

a 0 �4 �3 �5 0 �2 �8 �8 �7 �9 �9 �7 �4 �3 �4.9 12.1

b 4 0 2 1 0 4 �3 �3 �5 �2 �8 �2 1 �6 �1.2 8.4

c 3 �2 0 �4 1 �1 �6 �5 �9 �7 �13 �4 �3 �1 �3.6 10.9

d 5 �1 4 0 8 0 �1 �3 �8 �3 �9 �5 �1 4 �0.7 7.9

e 0 0 �1 �8 0 6 �9 �7 �8 �14 �8 �7 �5 �5 �4.7 11.9

f 2 �4 1 0 �6 0 �4 �2 �6 �3 �10 �3 1 �4 �2.7 9.9

g 8 3 6 1 9 4 0 �1 �2 �5 �6 �3 2 3 1.4 5.9

h 8 3 5 3 7 2 1 0 �2 �1 �6 1 3 5 2.1 5.1

i 7 5 9 8 8 6 2 2 0 5 �1 2 7 1 4.4 2.9

j 9 2 7 3 14 3 5 1 �5 0 �3 1 2 7 3.3 3.9

k 9 8 13 9 8 10 6 6 1 3 0 7 8 13 7.2 0.0

l 7 2 4 5 7 3 3 �1 �2 �1 �7 0 4 4 2.0 5.2

m 4 �1 3 1 5 �1 �2 �3 �7 �2 �8 �4 0 3 �0.9 8.1

n 3 6 1 �4 5 4 �3 �5 �1 �7 �13 -4 �3 0 �1.5 8.7

The locations of pharmacies a–n are shown in Fig. 2. A(t) and B(t) denote the time series included in the cross-correlation function, R(� ):
R(� ) = E[A(t)B(t+� )]p

E[A(t)2]E[B(t)2)]
where E[.] denotes the mean over time, t, and � is a parameter called lag.15)

Fig. 1. Daily Variations in the Sales of an Influenza Anti-Viral
Agent (Tamiflu® Capsule) at Pharmacies (A and B) and
Cross-Correlation Function (C) of the Variations in the
Season from November 1st, 2004 to October 31st, 2005

(A) pharmacy i; (B) pharmacy m (the locations are shown in Fig.  2).
The Y-axis denotes the number of capsules dispensed at the pharmacies.
The correlation function (C) is smoothed by the moving average method
with a window of seven days.
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posed to be the combinations of 14 things taken 2 at
a time (14C2 = 91). If 91 lines marked with the time
lags were drawn among the pharmacy sites, the map
would have been a mess. To circumvent this prob-
lem, we determine the order of infection periods
among the sites.

Table 1 lists the time lags from the permutations
of data (14P2 = 182). The result of Fig. 1C is in (i, m).
The diagonal elements of the matrix is zero, since
they are derived from the “auto-correlation” func-
tions. The second rightmost column includes the
mean of the time lags between a fixed pharmacy
[A(t)] and each of the others [B(t)]. These mean lags
can be regarded as the relative order of infection,
but statistical verification is inevitable for this inter-
pretation as mentioned below.

We can put the infection order in other words.
Pharmacies a–n are ranked with respect to the time
lags as shown by the 14 × 14 matrix of Table 1. The
concordance of the different ranking results (each
row of the matrix) can be tested by the Kendall’s
coefficient of concordance. The coefficient calcu-
lated (= 0.74) is close to the perfect concordance

(= 1). Therefore, the ranking is statistically signifi-
cant and the averaged lags are acceptable.

By the definition of this paper, the highest value
of the time lag corresponds to the earliest infection.
Pharmacy k has the highest mean lag (= 7.2 days).
Then, the delay of infection at another pharmacy can
be described relatively to the mean lag of pharmacy
k (see Relative Lag of Table 1 and for proof, see
paragraph appendix).

The delay times of local infection (Relative Lag),
mapped in Fig. 2, increase with increasing distance
from the heart of Tokyo. No exceptions are observed
in this study. Although the spatial order of the infec-
tion does not directly indicate the propagation route,
it is probable that the influenza infection spread from
the urban area of Tokyo to its suburbs through the
public transport systems in the season of 2004–05.
In the area, the transport facilities are stretched in a
radial pattern and are intertwined complicatedly to
enhance the carrying power. The sites of the phar-
macies (� of Fig. 2) can easily be reached from the
center of Tokyo through the railroad systems and
are within the sphere of commutation. The arrows
in Fig. 2 denote, though roughly, both the disease
propagation routes and rail lines. A similar spatial
pattern of influenza from an urban area to suburbs
was suggested previously.4)

The scale of the pharmacy network used is not
large enough to discover infection foci from which
the epidemic starts to propagate. However, pharmacy
k can be considered to be near a focus. The exist-
ence of another infection focus cannot be indicated
from the data of this study. The disease propagation
speed along the route from pharmacy k to another
can be estimated: a, 3.5; b and c, 3.1; d, 4.4; e, f and
g, 1.6; h, 3.5; i and j, 4.6; l, 2.7; m, 4.4; n, 3.3 km/
day. The average is 3.5 km/day. The ratio of the high-
est speed to lowest speed (= 4.6/1.6) is so small that
it corroborates the reliability of our estimation. Phar-
macies, d, i, j, and k are located along the railroads
(Seibu Ikebukuro line and Seibu Shinjuku line) run-
ning parallel from the heart of Tokyo and interest-
ingly, the estimates are almost the same (4.4 and 4.6
km/day). Similarly, the sites (a, b, c, e, f, and g) which
are along the same railroad (Utsunomiya line) are
characterized by the comparable infection speeds
(3.5, 3.1, and 1.6 km/day).

The infection speeds calculated with a pharmacy
other than k as an infection focus are inconsistent.
For example, the propagation speed between phar-
macies a and n (= 20.7 km/day) is much higher than
the average (= 3.5 km/day), suggesting that these

Fig. 2. Influenza Propagation Routes with Delay Times (day)
from Pharmacy k in Tokyo and Environs in 2004–05
Season

The sites of pharmacies a–n are marked with circles. The delay times
indicated are the values of Relative Lag of Table 1. The time delays of
close pharmacies are averaged. The propagation routes are indicated by
the arrows.
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sites are both far away from an infection focus.
The infection routes (arrows of Fig. 2) appear to

be independent of each other except the routes to
pharmacy a and to h. Between pharmacies a and d,
the propagation speed is calculated to be 9.3 km/
day; d and m, 169; m and n, 38.5; n and l, 10.1; l and
h, 146; h and a, 4.4 km/day. These speeds across the
routes of Fig. 2 are much higher than the average
(3.5 km/day). Therefore, the disease propagation
across the proposed routes is unlikely. The infection
route to site a is indistinguishable from the route to
site h, although they are based on different transport
systems.

We stress here that even a small-scale network
of pharmacies can provide the useful information
about the route and speed of disease propagation in
society. There remain a variety of things to be tack-
led, since the occurrence of disease is not just a
matter of individuals but is the result of complex
interactions among multifactorial etiologies such as
humans, society, environment, medicine, etc. A large
number of information sources including pharma-
cies, hospitals, clinics, chain drugstores and conve-
nience stores will play an important role in construct-
ing nation-wide vigilance of people’s health.

In appendix, it shows that the difference between
the mean values of Table 1 gives the actual time lag
between two sites [e.g., the lag between pharmacies
a and k is that 7.2 – (–4.9) = 12.1]. We discuss the
reason why the diagonal elements of the matrix (=
0, see Table 1) should be included in the mean of the
time lags. An alternative is to ignore the diagonal
elements, but this average is not useful.

The number of sites is n + 2: a, b, c1, ..., cn (see
Fig. 3). It is assumed that the time lag (A, B1, ...,  Bn)
between two sites does not depend on the route from
one site to the other. For example, the time lag of

 

 

 

 

 
 

 

 

 

Fig. 3. Time Lags, A, B1, ..., Bn, between Pairs of Sites, a, b, c1,
..., cn

the direct route from a to c1 is equal to the time lag
via b (= A + B1). We consider the average of all the
time lags from a site to the others, while the time lag
between the same sites is included as zero. The mean
at cite a is:

La =
0+A+(A+B1)+(A+B2) � � �+(A+Bn)

n+2

=
(n+1)A+B1 +B2 � � �+Bn

n+2

The first term of the denominator, 0, means the
time lag between a and a. The mean at cite b is:

Lb =
0�A+B1+B2+ � � �+Bn

n+2

=
�A+B1+B2 � � �+Bn

n+2

The difference between the mean lags is:

La�Lb =A

The denominator of the mean lags (La and Lb)
should be n + 2 in order that the difference (La – Lb)
describes the time lag (A). If the time lag between a
and a does not participate in the average, the total
number of participants is n + 1 and then La – Lb = (n
+ 2)A/(n + 1), which makes no sense.
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