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INTRODUCTION

Atherosclerosis is the principal vascular lesion
involved in the pathogenesis of myocardial and ce-
rebral infarction, which are common health prob-
lems in advanced countries. The lesion is initiated
by functional damage of the vascular endothelial
cells followed by an intimal hyperplasia of arterial
smooth muscle cells.1) When a monolayer of vascu-
lar endothelial cells is damaged slightly, the cells
migrate and proliferate to reendothelialize. However,
repeated injuries to vascular endothelial cells and
insufficient repair of the damaged endothelium lead
to arterial smooth muscle cell hyperplasia and even-

tually to the development of atherosclerosis. As a
result, the endothelial cell monolayer becomes
thrombogenic.2) On the other hand, the arterial
smooth muscle cells alter their phenotype from a
contractile to a synthetic state and actively prolifer-
ate, resulting in intimal thickening.3) Although the
mechanism of expansion of the atherosclerotic in-
tima is not simple, inhibition of the arterial smooth
muscle cell proliferation without damaging the en-
dothelial cell monolayers is one of the effective strat-
egies to prevent atherosclerosis.

It has been shown that polysaccharides inhibit
the proliferation of arterial smooth muscle cells. For
example, heparin inhibits the proliferation in vivo
and in vitro.4) The inhibitory effect does not depend
on the anticoagulant activity5) but is influenced
by the molecular weight6) and the degree of O-
sulfation.7) In addition, a highly sulfated semisyn-
thetic polysaccharide, pentosan polysulfate,8) and a
natural sulfated fucopolysaccharide, fucoidan,9) also
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inhibit the proliferation. On the other hand, with re-
spect to the vascular endothelial cell proliferation,
it has been shown that polysaccharides, including
heparin,10,11) heparan sulfate,12) and high concentra-
tions of unfractionated chondroitin sulfate,13) have
inhibitory effects. These results indicate that polysac-
charides can modulate the arterial endothelial and
smooth muscle cell proliferations; sulfation and de-
polymerization may influence the biological activi-
ties of these polysaccharides that affect the prolif-
eration.

Sodium spirulan (Na-SP) is a sulfated polysac-
charide with Mr ~220000 that was isolated from a
hot water extract of the blue-green alga Spirulina
platensis as an antiviral agent.14,15) The polysaccha-
ride consists of two types of disaccharide repeating
units, O-hexuronosyl-rhamnose and O-rhamnosyl-
3-O-methylrhamnose with sulfate groups, other mi-
nor saccharides, and sodium ions (Fig. 1A).16,17) In-
terestingly, Na-SP not only exhibits the antiviral ac-
tivity but also activates heparin cofactor II, a physi-
ological inhibitor of thrombin, by a mechanism that
is different from that of heparin.18,19) In addition, Na-
SP induces the synthesis of tissue plasminogen acti-
vator (t-PA) that activates the fibrinolytic system in
cultured human fetal lung fibroblasts.20) Replacement
of the sodium ion with calcium ion generally main-
tains the biological activities of Na-SP; however,
removal of the sodium ion or desulfation markedly
reduces its activities.

Colominic acid (CA) is an α2,8-linked polymer

of sialic acid (Fig. 1B), originally isolated from Es-
cherichia coli K1.21) Although little is known about
the biological activity of CA, O-sulfated CA (SCA),
prepared by chemical sulfation of the CA chain,22)

exhibits several biological activities, including an-
tiviral activities,23–25) inhibition of the cytotoxic ac-
tion of bee and snake venom,26) inhibition of P-
selectin-dependent macrophage infiltration in the
glomeruli in experimental rats with crescentic glom-
erulonephritis,27) and inhibition of the fertilization
of mouse gametes.28) However, the effects of CA and
SCA on the vascular cell functions as well as the
blood coagulation-fibrinolytic system have not been
investigated.

We hypothesized that Na-SP and CA with or
without chemical modifications may act on the ar-
terial endothelial and smooth muscle cells and ex-
hibit beneficial effects for the prevention of athero-
sclerosis. In this review, we describe the effects of
Na-SP and CA/SCA on the arterial endothelial and
smooth muscle cells in culture.

ARTERIAL SMOOTH MUSCLE CELL
PROLIFERATION29,30)

Since arterial smooth muscle cell hyperplasia is
the hallmark of atherosclerosis, the effect of Na-SP
was investigated using a culture system of these cells.
Our experiments demonstrated that Na-SP strongly
inhibits the proliferation of the arterial smooth

 

Fig. 1. Structure of Na-SP (A) and CA/SCA (B)
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muscle cells. Although dextran, dextran sulfate,
chondroitin sulfate, dermatan sulfate, and hyaluronan
did not influence the proliferation, heparin and
heparan sulfate significantly inhibited it. However,
the inhibitory effect of Na-SP is markedly stronger
than that of heparin and heparan sulfate, suggesting
that the strong inhibitory effect of Na-SP on the ar-
terial smooth muscle cell proliferation requires a
certain sequence of the Na-SP polysaccharide struc-
ture. In addition, calcium spirulan (Ca-SP), which
is prepared by replacing the sodium ion in the Na-
SP molecule by calcium ion, also inhibited the arte-
rial smooth muscle cell proliferation. However, H-
SP, which is prepared by removing the sodium ion
from the Na-SP molecule, and desulfated SP cannot
inhibit the proliferation. These results suggest that
the molecular conformation of Na-SP that is main-
tained by the sodium or calcium ion bound to the
sulfate group is also required for the inhibitory ef-
fect. Furthermore, the inhibitory effect of Na-SP on
the arterial smooth muscle cell proliferation was
completely retained even after the molecule was de-
polymerized to yield a molecule of Mr ~14700. Taken
together, Na-SP is a potent inhibitor of the arterial
smooth muscle cell proliferation, and this inhibitory
effect requires a molecular mass of Mr ~14700 or
more, a sulfate group, and a sodium ion.

On the other hand, it was shown that both CA
(Mr ~17000; prepared as a homopolymer of N-
acetylneuraminic acid) and SCA (Mr ~22000; con-
taining 13.4% sulfur) inhibited the proliferation of
the arterial smooth muscle cells to a similar extent.
The inhibitory effect of CA and SCA was almost
equal to that of heparin but weaker than that of Na-
SP and Ca-SP. Therefore, it was revealed that CA
with or without sulfate groups as well as Na-SP/Ca-
SP is a moderate inhibitor of the arterial smooth
muscle cell proliferation.

MAINTENANCE OF VASCULAR
ENDOTHELIAL CELL
MONOLAYERS31–33)

The maintenance of the vascular endothelial cell
monolayers is important for the prevention of ath-
erosclerosis because the vascular lesion is initiated
by the functional damage to these cells. It was re-
vealed that Na-SP/Ca-SP inhibited the repair of the
damaged vascular endothelial cell monolayer via
inhibiting the proliferation without nonspecific cell
damage. However, the inhibitory effect of Na-SP on

the endothelial cell proliferation is weaker than that
on the arterial smooth muscle cells. In addition,
desulfation of Na-SP resulted in the loss of the in-
hibitory effect on the vascular endothelial cell pro-
liferation. It is suggested that similar to the case of
arterial smooth muscle cells, the molecular confor-
mation of Na-SP that is maintained by the sodium
or calcium ion bound to the sulfate group is also
required for the inhibitory effect on the endothelial
cell proliferation.

The effects of CA/SCA on the vascular endot-
helial cells are complicated. First, CA causes non-
specific cell damage to the cells in a monolayer.
Second, the injurious effect of CA on the endothe-
lial cell monolayers is reduced depending on the
degree of sulfation. Thus, a highly sulfated SCA is
nontoxic to the monolayers. Third, CA is nontoxic
to the proliferating endothelial cells but markedly
inhibits the proliferation of these cells. This inhibi-
tory effect is much stronger than that of Na-SP/Ca-
SP. Fourth, sulfation of CA diminishes the inhibi-
tory effect of CA on the endothelial cell prolifera-
tion; however, SCA does not inhibit the prolifera-
tion. Therefore, CA has two distinct effects on the
vascular endothelial cells — an inhibitory effect on
their proliferation and an injurious effect on their
monolayers. Furthermore, these cell density-depen-
dent effects of CA can be reduced by sulfation. In
other words, SCA shows neither the potent inhibi-
tory effect on the proliferation nor the toxic effect
on the integrity of vascular endothelial cell mono-
layer.

FIBRINOLYTIC ACTIVITY AND
METABOLISM OF ANTICOAGULANT
PROTEOGLYCANS IN VASCULAR

ENDOTHELIAL CELLS34–37)

Vascular endothelial cells play an important role
in the regulation of the blood coagulation-fibrinolytic
system. These cells synthesize and secrete fibrin-
olytic proteins, such as t-PA, urokinase-type plas-
minogen activator (u-PA),38) and plasminogen acti-
vator inhibitor type 1 (PAI-1).39) Since both t-PA and
u-PA convert plasminogen to plasmin that degrades
fibrin, the fibrinolytic activity in the circulating blood
depends on the balance between t-PA/u-PA and their
common inhibitor PAI-1. Because there is a strong
interrelationship between atherosclerosis and the
blood coagulation-fibrinolytic system, we investi-
gated the effects of Na-SP on the secretion of fibrin-
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olytic proteins from cultured human coronary en-
dothelial cells. It was found that Na-SP increases
the secretion of u-PA and decreases that of PAI-1,
resulting in an enhancement of the activity of both
t-PA and u-PA in the liquid phase. The effect of Na-
SP on the secretion of fibrinolytic proteins in the
endothelial cells is completely different from that in
fibroblasts,29) although the mechanism for the cell-
type dependency is unknown.

The endothelial cells synthesize and secrete not
only fibrinolytic proteins but also anticoagulant sub-
stances such as proteoglycans. The predominant
proteoglycans in the cells are the large heparan sul-
fate proteoglycan perlecan and the small leucine-
rich dermatan sulfate proteoglycan biglycan.40) Both
perlecan and biglycan exhibit antithrombin activity
via the activation of antithrombin III and heparin
cofactor II, respectively.41,42) Na-SP stimulates the
release of both perlecan and biglycan with intact core
proteins from the endothelial cell monolayers by
inhibiting the association of proteoglycans with the
cell monolayer. It is suggested that there are two
possible mechanisms by which Na-SP elevates the
anticoagulant activity in the liquid phase surround-
ing the vascular endothelial cells — the direct acti-
vation of heparin cofactor II in the blood and the
indirect activation of antithrombin III and heparin
cofactor II by the stimulation of endothelial perlecan
and biglycan release.

CONCLUSION

The attempt to apply the biological activities of
polysaccharide in preventing atherosclerosis has
been insufficient. Modulation of the vascular endot-
helial and smooth muscle cell functions is one of
the effective strategies of preventing atherosclero-

sis. Our data about the effects of Na-SP and CA/
SCA on the vascular endothelial and smooth muscle
cells are summarized in Table 1. Many problems
exist in clarifying the biological effects of depoly-
merized Na-SP/SCA on the vascular cells and the
application of the polysaccharides as preventive
agents of atherosclerosis. Nevertheless, our data sug-
gest that depolymerized Na-SP and SCA may func-
tion as the precursors of beneficial agents that pre-
vent atherosclerosis because they do not influence
the maintenance of the endothelial cell layer but in-
hibits the proliferation of the arterial smooth muscle
cells. With respect to Na-SP, an activation of the
endothelial fibrinolytic system was observed. The
effect of depolymerized Na-SP and SCA on the fi-
brinolytic protein secretion, the metabolism of
proteoglycans, and other anticoagulant and fibrin-
olytic functions of the endothelial cells should be
investigated further.
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Table 1. The Effects of Na-SP and CA/SCA on Vascular Endothelial and Smooth Muscle Cells

Proliferation of Proliferation of Maintenance of Release of proteoglycans Fibrinolytic activity

vascular smooth endothelial cells endothelial cell from endothelial cell of endothelial cells

muscle cells monolayers monolayers

Na-SP # # # " "

H-SP ! N.D. N.D. ! N.D.

Desulfated SP ! " N.D. ! N.D.

Depolymerized SP # ! N.D. " N.D.

CA # # # N.D. N.D.

SCA # ! ! N.D. N.D.

", Stimulation; !, no effect; #, inhibition; N.D., not determined.
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