Anabolic Effects of Bee Pollen Cistus ladaniferus Extract on Bone Components in the Femoral-Diaphyseal and -Metaphyseal Tissues of Rats in Vitro and in Vivo

Masayoshi Yamaguchi,* Reiko Hamamoto, Satoshi Uchiyama, Kaori Ishiyama, and Ken Hashimoto

*Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan and Institute for Health Science, Yamada Apiculture Center, Inc., 194 Ichiba, Kagamino-cho, Tomata-gun, Okayama 708–0393, Japan

The effects of bee pollen extract on bone components in the femoral-diaphyseal (cortical bone) and -metaphyseal (trabecular bone) tissues of rats in vitro and in vivo were investigated. Bone tissues were cultured for 48 hr in serum-free Dulbecco’s modified Eagle’s medium containing either vehicle or water- or ethanol-solubilized extracts (10, 100, or 1000 µg/ml of medium) obtained from the bee pollen of Cistus ladaniferus. Calcium content in the femoral-diaphyseal or -metaphyseal tissues was significantly increased in the presence of water-solubilized extract (100 or 1000 µg/ml) and ethanol-solubilized extract (1000 µg/ml). An increase was also observed in the presence of water-solubilized extract (100 µg/ml) obtained from Fagopyrum esculentum, Camellia sinesis, or Brassica napus L.

Alkaline phosphatase activity and DNA content in the femoral-diaphyseal or -metaphyseal tissues in vitro were significantly increased in the presence of water-solubilized extract (100 or 1000 µg/ml) obtained from the bee pollen. The effects of the bee pollen extract (100 µg/ml) in increasing bone components were completely inhibited in the presence of cycloheximide (10–6 M), an inhibitor of protein synthesis, in vitro. Moreover, the calcium content and alkaline phosphatase activity in the femoral-diaphyseal or -metaphyseal tissues were significantly increased by the oral administration of water-solubilized extracts (5 or 10 mg/100 g body weight) obtained from the bee pollen of Cistus ladaniferus once daily for 7 days. The DNA content in the diaphyseal or metaphyseal tissues was significantly increased by the oral administration of water-solubilized extract (10 mg/100 g) of bee pollen cistus. The dose of 1.0 mg/100 g caused a significant increase in the diaphyseal and metaphyseal alkaline phosphatase activity or the metaphyseal DNA content in vivo. This study demonstrates that the extract of bee pollen has an anabolic effect on bone components in rats in vitro and in vivo.

Key words —— bone formation, bee pollen, Cistus ladaniferus, osteoporosis, rat femur

INTRODUCTION

Bone loss with aging induces osteoporosis, which is widely recognized as a major public health problem.1–3 A decrease in bone mass leads to bone fracture. Bone loss may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional supplements can prevent bone loss caused by increasing age.4,5

Food chemical factors may help to prevent bone loss with increasing age. Recent studies have shown that isoflavones (including genistein and daidzein), which are contained in soybeans,5–8 menaquinone-7, an analogue of vitamin K2, which is abundant in fermented soybeans,9–11 and β-cryptoxanthin, a carotenoid which is abundant in Satsuma mandarin (Citrus unshiu MARC),12-15 have stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoblastic bone formation, thereby increasing bone mass. The intake of dietary factors has been shown to have a preventive effect on bone loss in animal models of osteoporosis.16–18 Thus food factors may be useful in the prevention of osteoporosis.19–21
This study was undertaken to determine the effects of bee pollen extract on bone components in the femoral tissues of rats, since the role of bee pollen in the prevention of bone loss with increasing age has not yet been clarified.

MATERIALS AND METHODS

Chemicals —— Dulbecco’s modified Eagle’s medium (MEM) (high glucose, 4.5 g/dl) and a penicillin-streptomycin solution (penicillin 5000 U/ml; streptomycin 5000 µg/ml) were purchased from Gibco Laboratories (Grand Island, NY, U.S.A.). Bovine serum albumin (fraction V) and cycloheximide were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.). Other chemicals were of reagent grade from Wako Pure Chemical Industries (Osaka, Japan).

Bee Pollen and Propolis Extracts —— Bee pollen was obtained from Cistus ladaniferus (C. ladaniferus), Brassica napus L. (B. napus L.), Fagopyrum esculentum (F. esculentum), and Camelia sinensis (C. sinensis) L. O. Kuntze. The powder of bee pollen (5 g) was suspended in distilled water (20 ml) and mixed vigorously, and the suspension was centrifuged at 9000 g for 20 min. The 10000 g supernatant fraction was collected and filtered, and the filtrate was freeze-dried. The powder of the water-solubilized extract was dissolved in ice-cold distilled water for use in experiments.

The powder of bee pollen (20 g) was suspended in 99.5% ethanol (30 ml) and mixed vigorously, and the suspension was centrifuged at 800 g for 10 min. The 800 g supernatant fraction was collected and filtered, and the filtrate was freeze-dried. The powder of the ethanol-solubilized extract was dissolved in 99.5% ethanol for use in experiments.

Propolis was obtained from Brazil. The powder of propolis (20 g) was suspended in 99.5% ethanol (30 ml) and mixed vigorously, and the suspension was centrifuged at 800 g for 10 min. The 800 g supernatant fraction was collected and filtered. The filtrate was freeze-dried and dissolved in 99.5% ethanol for use in experiments.

To assay alkaline phosphatase activity, the diaphyseal and metaphyseal tissues were immersed in experiments as a water-solubilized extract of propolis.

Animals —— Male Wistar rats (conventional) weighing 90–100 g (4 weeks old) were obtained from Japan SLC (Hamamatsu, Japan). The animals were fed a commercial laboratory chow (solid) containing 1.1% calcium and 1.1% phosphorus and housed at room temperature of 25°C, with free access to distilled water.

Bone Culture —— The rats were killed by exsanguinations and the femurs were removed aseptically and soaked in ice-cold 0.25 M sucrose solution. The femurs were cleaned of soft tissue and marrow, and the diaphysis and metaphysis (not containing epiphyseal tissue) were separated. The femoral-diaphyseal or -metaphyseal tissues were cut into small pieces. Femoral-diaphyseal or -metaphyseal fragments were cultured for 24 hr in 35-mm dishes in 2.0 ml of medium consisting of Dulbecco’s MEM (high glucose, 4.5g/dl) supplemented with 0.25% bovine serum albumin plus antibiotics (penicillin 100 units and streptomycin 100 µg/ml of medium).

In experiments, bone tissues were cultured for 48 hr in medium containing either vehicle or water- or ethanol-solubilized bee pollen extract.

In other experiments, culture medium was contained water- or ethanol-solubilized extract obtained from propolis. Cultures were maintained at 37°C in a water-saturated atmosphere containing 5% CO₂ and 95% air.

Administration Procedures —— The water-solubilized extract (1.5, or 10 mg/ml 100 g body weight) obtained from the bee pollen of C. ladaniferus was orally administered to rats through a stomach tube once daily for 7 days. Control rats received distilled water (1.0 ml/100 g body weight) orally. The animals were killed 24 hr after the last administration by cardiac puncture under light ether anesthesia, and the blood and femur were removed immediately.

Analytical Procedures —— Blood samples were centrifuged for 30 min after collection, and the serum was separated and analyzed immediately. Serum calcium or inorganic phosphorus concentrations were determined using a kit (Wako Pure Chemical Industries).

The diaphyseal and metaphyseal tissues was dried for 16 hr at 110°C. Calcium was determined using atomic absorption spectrophotometry. The calcium content in bone tissues was expressed as milligrams per gram of dry bone.
3.0 ml of ice-cold barbital buffer 6.6 mM (pH 7.4), cut into small pieces, and disrupted for 60 sec with an ultrasonic device. The supernatant, centrifuged at 600 × g for 5 min, was used to measure enzyme activity. An enzyme assay was carried out under optimal conditions. Alkaline phosphatase activity was determined by the method of Walter and Schutt. Enzyme activity was expressed as micromoles of p-nitrophenol liberated per minute per milligram of protein. The protein concentration was determined using the method of Lowry et al.

To measure the bone DNA content, the diaphyseal and metaphyseal tissues were shaken with 4.0 ml ice-cold 0.1 N NaOH solution for 24 hr after homogenization of the bone tissues. After alkali extraction, the samples were centrifuged at 1000 × g for 5 min and the supernatant was collected. The DNA content was determined using the method of Ceriotti and expressed as the amount of DNA (mg)/g of bone tissue wet weight.

Statistical Analysis —— The significance of differences between values was estimated using Student’s t-test. A p-value of less 0.05 was considered to indicate a statistically significant difference.

RESULTS

Effects of Bee Pollen Extract on Bone Components in Vitro

The effects of bee pollen extract on calcium content in the femoral-diaphyseal and -metaphyseal tissues of rats in vitro is shown in Fig. 1. When bone tissues were cultured for 48 hr in medium containing either vehicle or water- or ethanol-solubilized extracts (10, 100, or 1000 µg/ml of medium) obtained from the bee pollen of C. ladaniferus, the calcium content in the femoral-diaphyseal tissues was significantly increased in the presence of water- or ethanol-solubilized extracts. The metaphyseal calcium content was significantly increased in the presence of water-solubilized extract (100 µg/ml) or ethanol-solubilized extract (1000 µg/ml). Thus bee pollen extract was found to have a stimulatory effect on calcium content in the femoral-diaphyseal and -metaphyseal tissues in vitro. The water-solubilized extract had more potent effects on bone calcium content as compared with those of the ethanol-solubilized extract.

The effects of various bee pollen extracts on calcium content in the femoral-diaphyseal tissues of rats in vitro are shown in Fig. 2. Diaphyseal calcium content was significantly increased in the presence of water-solubilized extracts obtained from the bee pollen of F. esculentum, C. sinensis, B. napus L., or C. ladaniferus.

Femoral-diaphyseal tissues were cultured for 48 hr in medium containing either vehicle or water- or ethanol-solubilized extracts (100 µg/ml of medium) obtained from propolis (Fig. 3). The presence of water-solubilized extract (100 µg/ml)
caused a significant increase in the bone calcium content. Ethanol-solubilized extract (10, 50, or 100 µg/ml) did not have significant effects on the bone calcium content.

The effects of bee pollen extract on alkaline phosphatase activity and DNA content in the femoral-diaphyseal and -metaphyseal tissues of rats in vivo are shown in Figs. 4 and 5 respectively. Alkaline phosphatase activity (Fig. 4) or DNA content (Fig. 5) in the femoral-diaphyseal or -metaphyseal tissues was significantly increased in the presence of the water-solubilized extract (100 or 1000 µg/ml) obtained from the bee pollen of *C. ladaniferus*.

Femoral-diaphyseal or -metaphyseal tissues obtained from normal rats were cultured for 48 hr in medium containing either vehicle or water-solubilized bee pollen extracts (10, 100, or 1000 µg/ml of medium) obtained from *C. ladaniferus*. Each value is the mean ± S.E.M. of six rats. *p < 0.01 compared with the control (none) value.
The DNA content in the femoral-diaphyseal tissues was significantly increased by the administration of the water-solubilized extract (10 mg/100 g) obtained from the bee pollen of *C. ladaniferus* (Fig. 9). Metaphyseal DNA content was also significantly increased by the administration of the water-solubilized extract (1, 5, or 10 mg/100 g).

DISCUSSION

Bee pollen extract was found to have anabolic effects on bone components in the femoral-diaphyseal and -metaphyseal tissues of rats *in vitro* and *in vivo*. Of various bee pollens, the water-solubilized extract obtained from *C. ladaniferus* had a marked effect in increasing the bone calcium content. The ethanol-solubilized extract of bee pollen significantly increased the bone calcium content. However, the effects of the water-solubilized extract in increasing the bone calcium content were greater than those of the ethanol-solubilized extract. The active component in bee pollen was thus present in water-solubilized extract (1, 5, or 10 mg/100 g).

Alkaline phosphatase is an enzyme marker of osteoblasts and the enzyme participates in bone mineralization. The DNA content in bone tissues is an index of the number of bone cells. Culture with...
the extract obtained from the bee pollen of *C. ladaniferus* caused a significant increase in alkaline phosphatase activity and DNA content in the femoral-diaphyseal and -metaphyseal tissues *in vitro*. The increases were completely inhibited in the presence of cycloheximide, an inhibitor of protein synthesis. These observations suggest that the stimulatory effects of bee pollen extract on bone formation results from newly synthesized protein components *in vitro*.

The oral administration of the water-solubilized extract obtained from the bee pollen of *C. ladaniferus* to rats caused a significant increase in calcium content, alkaline phosphatase activity, and DNA content in the femoral-diaphyseal and -metaphyseal tissues *in vivo*. The increases were completely inhibited in the presence of cycloheximide, an inhibitor of protein synthesis. These observations suggest that the stimulatory effects of bee pollen extract on bone formation results from newly synthesized protein components *in vivo*.

Bee pollen is used as a nutrient factor. The supplemental intake of dietary bee pollen may help to prevent bone loss with increasing age. This should be determined using animal models of osteoporosis *in vivo*.

In conclusion, it has been demonstrated that the water-solubilized extract obtained from the bee pollen of *C. ladaniferus* has anabolic effects on bone components in the femoral-diaphyseal and -metaphyseal tissues of rats *in vitro* and *in vivo*.

REFERENCES

10) Yamaguchi, M., Kakuda, H., Gao, Y. H. and Tsukamoto, Y. (2000) Prolonged intake of femoral soybean (*natto*) diets containing vitamin K₂ (mena-

