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INTRODUCTION

RecQ helicases are evolutionally conserved en-
zymes required for the maintenance of genome sta-
bility.1) Mutations in 3 of the 5 known human RecQ
helicase genes, BLM, WRN, and RTS, cause dis-
tinct clinical disorders, i.e., Bloom’s, Werner’s, and
Rothmund-Thomson syndromes, respectively, which
are characterized by genome instability and a pre-
disposition toward cancer.2–4) As with RecQ1, no
human genetic disease has been attributed thus far
to a deficiency in the RecQ5 gene. RecQ5 has 3 al-
ternative splicing products, the longest of which,

RecQ5β, is localized only in nuclei and corresponds
to RECQ5/QE in Drosophila melanogaster.5,6) Pre-
viously we showed that RECQ5/QE complements
several phenotypes of sgs1, a mutant of the sole
RecQ in yeast, and suggested that RECQ5/QE has
common and unique RecQ functions in comparison
with BLM and WRN and that the C-terminal do-
main has a specific function in the absence of Top3.7)

All RecQ family members contain a catalytic
helicase domain that comprises 7 highly conserved
motifs found in many DNA and RNA helicases.
RECQ5/QE protein (1058 aa) is composed of a short
N-terminal region, a helicase domain, and a long
unique C-terminal domain (~700 aa). It is likely that
these non-conserved sequences flanking to the
helicase domain are important in functionally dif-
ferentiating the roles of the RecQ helicases within
the cell by either providing additional enzymatic
functions, such as the exonuclease activity depen-
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dent upon the N-terminal domain of WRN,8) or by
mediating interactions with other proteins, for ex-
ample, binding of p53 by the C-terminal domain of
WRN.9) Since no obvious motif was identified in
the C-terminal domain of RECQ5/QE,5) we decided
to investigate its interaction with other proteins.

Here we screened a Drosophila cDNA library
with a RECQ5/QE unique C-terminal sequence
as bait by using the yeast two hybrid method.
Retrotransposon mdg3 protein was identified to have
a specific interaction with RECQ5/QE. mdg3 is a
long terminal repeat (LTR)-containing retrotrans-
poson of Drosophila melanogaster that is related to
human immunodeficiency virus (HIV). The impli-
cations of these findings for the retroviral life cycle
and genome stability are discussed.

MATERIALS AND METHODS

Yeast Two-Hybrid Screening —–—  To generate
pASRECQE∆N, we cloned a DNA fragment corre-
sponding to amino acids 464–1058 of the RECQ5/
QE into pAS-2 (Clontech, California, U.S.A.), as
described earlier.7) Yeast strain CG-1945 expressing
the Gal4 DNA binding domain (Gal4BD)-RECQ5/
QE∆N fusion protein (pASRECQE∆N) was used as
a host strain to screen a 3–21 hr Drosophila embryo
cDNA library as recommended by the supplier of
the plasmids and strain (Clontech). The two-hybrid
cDNA library inserted in the plasmid pACT2 was
used to transform the host strain containing inte-
grated lacZ and HIS3 reporter genes by using a modi-
fication of the lithium acetate method of Gietz et
al.10) pACT2 utilizes the constitutive ADH1 promoter
for expression of a cDNA-encoded protein as a fu-
sion protein with the activation domain of Gal4
(Gal4AD). An estimated ~107 transformants were
plated on medium lacking Trp, Leu, and His in the
presence of 6 mM 3-aminotriazole. False positives
were eliminated by generating Leu+ Trp–

transformants and assaying them for β-galactosidase
activity, by co-transforming pACT2 clones and a
control bait, pAS-lamin (pLAM5′-1), and by
retransforming pACT2 clones into Y190 harboring
pASRECQE∆N and reassaying for β-galactosidase
activity and growth on Trp– Leu– His– medium with
25 mM 3-aminotriazole. Plasmids were recovered
from HIS3- and lacZ-positive clones by rescue in
Escherichia coli and used to retransform Y190 ex-
pressing GAL4BD-RECQ5/QE∆N or other controls
to verify the specificity of the two-hybrid interac-

tion. Assays were performed in triplicate. Those
cDNAs that induced the reporter genes in a bait-spe-
cific manner were identified by DNA sequencing.
Colony-Lift Filter Assay —–—  Fresh colonies were
lifted onto Whatman #5 filters. After the filters had
been frozen completely in liquid nitrogen, they were
incubated at 30°C in 100 mM NaPO4 (pH7.0)
containing 10 mM KCl, 1 mM MgSO4, 0.3% β-
mercaptoethanol, and 0.3 mg/ml 5-bromo-4-chloro-
3-indolyl-D-galactopyranoside.
Preparation of Glutathione S-Transferase (GST)-
Fusion Proteins —–—  pET42b (Novagen, Cali-
fornia, U.S.A.) plasmids were used to prepare GST
fusion proteins. ApaLI-ScaI fragments of RECQ5/
QE (8–1058 aa) derived from RECQ5/QE cDNA5)

were blunt ended and ligated into the StuI site of
pET42b. To construct the C-terminal domain fusion
proteins (464–1058 aa), we removed the BglII frag-
ments from pET42b-RECQ5/QE (8–1058 aa) plas-
mids. The acidic region of C-terminal domain (464–
840 aa) plasmids was generated by ligating the BglII-
XhoI fragments of RECQ5/QE into the BglII-XhoI
sites of pET42b. The basic region of C-terminal do-
main (841–1058 aa) plasmids was generated by li-
gating the XhoI fragments of RECQ5/QE into the
XhoI site of pET42b. GST fusion proteins were ex-
pressed and purified from BL21 Star (DE3) cells
(Invitrogen, California, U.S.A.) transformed with the
pET42b expression plasmids containing various
portions of the RECQ5/QE fragments. Overnight
cultures of these transformants were inoculated
into LB at a 1 : 100 dilution and grown at 37°C to
an A600 of 0.4–0.6. Isopropyl-β-D-thiogalactopyrano-
side was then added to a final concentration of
0.4 mM, and the cultures were allowed to grow for
a further 3 hr. The cultures were harvested, resus-
pended in cold lysis buffer (20 mM potassium phos-
phate pH 7.5 containing 10% sucrose, 0.5 mM
dithiothreitol, 1 mM PMSF, 1 mM EDTA, and
1 mg/ml lysozyme), and then chilled on ice for
30 min. Cells were then lysed by sonication, and the
lysate was centrifuged at 9500 rpm for 60 min at 4°C.
The supernatant was stored at –80°C and used for
the GST pull down assay.
In Vitro Transcription/Translation —–—  The
NcoI-XhoI fragments of pACTmdg3gagNC were
ligated into the NcoI-SalI sites of pSPUTK
(STRATAGENE, California, U.S.A.). The plasmids
were used to generate [35S]methionine-labeled pro-
teins in the TNT-coupled reticulocyte system
(Promega, Wisconsin, U.S.A.). The reaction mix-
tures were incubated at 30°C for 90 min, and the
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labeled proteins were immediately used for the GST
pull down assay.
GST Pull Down Assay —–—  In vitro synthesized
[35S]methionine labeled mdg3 gag-NC protein was
incubated with GST fusion proteins (1 µg) bound to
glutathione Sepharose 4B beads (10 µl, Amersham
Biosciences, Buckinghamshire, U.K.) in 150 µl of
GST binding buffer (50 mM potassium phosphate
pH 7.5, containing 150 mM KCl, 1 mM MgCl2, 10%
glycerol, 1% Triton X-100, and protease inhibitors
[Roche, Basel, Switzerland]) for 2 hr at 4°C. The
beads were then washed 3 times in GST binding
buffer, and the labeled proteins were separated by
sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE).5) The gels were dried and
analyzed by using a BAS2500 Imaging plate reader
(Fuji, Tokyo, Japan).
Helicase Assay —–—  The SalI-HindIII fragment
of pACTmdg3gagNC was cloned into XhoI-HindIII
sites of pRSETA vector11) to produce His-tagged
mdg3 gag-NC protein. The recombinant protein was
purified by Probond column chromatography ac-
cording to the manufacturer’s manual (Invitrogen).
Full-length RECQ5/QE protein was expressed in a
baculovirus/insect cell system and was purified as
described previously.12) Helicase assays were per-
formed using 32P-labeled 20mer annealed with
M13mp18 ssDNA, as described earlier.12) The reac-
tion was initiated by the addition of RECQ5/QE pro-
tein and was incubated at 27°C for 10 min. The re-
action products were separated on a 12% polyacry-
lamide gel. Dried gels were analyzed using the BAS
2500 Imaging plate reader (Fuji).

RESULTS

The yeast two-hybrid screening method was used
to identify proteins that interacted with the C-termi-
nal domain of RECQ5/QE. Since RECQ5/QE is ex-
pressed most preferentially in early embryos,5)

Drosophila embryo cDNA Gal4AD fusion library
DNA was introduced into CG1945 harboring
Gal4BD fused to the C-terminal domain of RECQ5/
QE and screened for being a His+ Leu+ Trp+ aux-
otroph as described in MATERIALS AND METH-
ODS. Expression of the C-terminal domain of
RECQ5/QE as a Gal4BD fusion protein was con-
firmed by immunoblot analysis of the yeast cell ly-
sates with anti-RECQ5/QE and anti-Gal4BD anti-
bodies (data not shown). Several colonies were ob-
tained whose HIS3 and lacZ reporter genes had been

activated. These colonies were considered to con-
tain partners interacting with RECQ5/QE. To fur-
ther verify this interaction, we isolated the Gal4AD-
cDNA plasmids from these colonies and used
them for simultaneous co-transformation with
pASRECQ5/QE∆N, empty vector, or pAS-lamin as
a negative control in Y190 strain. Together with
Gal4BD-RECQ5/QE C-terminal domain, a Gal4AD-
cDNA clone, pACTmdg3gagNC, specifically acti-
vated the HIS3 reporter gene (Fig. 1A and 1B),
and also the LacZ reporter gene (Fig. 1C), indicat-
ing that the activation depends on both the C-
terminal domain of RECQ5/QE and the cDNA-
encoded proteins. The cDNA sequence was 100%
identical to the Gag nucleocapsid portion of mdg3
DNA (mdg3 gag-NC, 1091–1739 nt, Fig. 2).13) Thus,
retrotransposon mdg3 gag-NC and the C-terminal
domain of RECQ5/QE specifically activated HIS3
reporter gene and lacZ reporter gene in the yeast two
hybrid system, suggesting specific interaction be-
tween them (Fig. 1).

Fig. 1. Retrotransposon mdg3 gag-NC Interacts Specifically
with RECQ5/QE in Yeast Two-Hybrid System

Interaction in the yeast two-hybrid system between retrotransposon
mdg3 gag-NC and C-terminal domain of RECQ5/QE (d). Also shown
are 2 negative controls: lamin C (pLAM5′-1, e), which does not interact
with mdg3 gag-NC, and an empty vector control, demonstrating that the
C-terminal domain of RECQ5/QE (b) or the mdg3 gag-NC (c) does not
alone activate the reporter genes. Y190 yeast cells containing integrated
lacZ and HIS3 reporter genes were co-transformed with plasmids pAS2-
1 and pACT2 (a), pASRECQE∆N and pACT2 (b), pAS2-1 and pACT2-
mdg3 gag-NC (c), pASRECQE∆N and pACT2-mdg3 gag-NC (d,
duplicate) or pLAM5′-1 and pACT2-mdg3 gag-NC (e). The transformed
clones were incubated on S.D./-Trp/-Leu (A) and S.D./-HIS (B) plates.
The β-galactosidase activities were measured by the colony-lift filter
assay (C) as described in MATERIALS AND METHODS.
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Fig. 2. Organization of the Retrotransposon mdg3 Genome
A. Diagram of retrotransposon mdg3. The box shaded in gray shows the gag-coding region containing 2 zinc fingers (gray region is shown in B). The

underlined region was cloned in this study (mdg3 gag-NC). The open box is the pol-coding region. Hatched boxes represent LTRs. B. Amino acid
sequence alignments of gag nucleocapsid protein around the 2 zinc fingers in mdg3, HIV-2 and HIV-1. Residues indicated by dark or light shading
represent identical or similar amino acids, respectively. Numbers on the top represent positions of amino acids from the first Met of mdg3 gag.

gag-NC itself did not cause any change in strand
displacement (data not shown).

DISCUSSION

In this present study, we demonstrated that
RECQ5/QE specifically bound to retrotransposon
mdg3 gag-NC through its acidic region. In addition,
RECQ5/QE helicase activity in vitro was enhanced
by mdg3 gag-NC protein.

The mdg3 element is localized at 15–17 sites on
different chromosomes of Drosophila melanogaster,
with its location varying from one animal to another;
and it move around mostly to the sites of intercalary
heterochromatin.15) The ORF of the mdg3 sequence
encodes a putative retrotransposon polyprotein of
1449 aa and a portion of gag-NC was most related
to HIV nucleocapsid protein having 2 zinc fingers
of the CCHC type (Fig. 2B). Most of what is known
about the function of nucleocapsid proteins has re-
sulted from the study of retroviruses.

HIV-1 nucleocapsid protein NCp7, is a small
protein with 2 zinc fingers (Fig. 2B), is found in the
virion core where several hundred molecules of it
coat the viral RNA. Virion NCp7 enters cell with
the viral genomic RNA and accumulates in the
nucleus after entry.16) NCp7 has nucleic acid chap-
erone properties that guide reverse transcriptase to
synthesize the proviral DNA. In vitro, NCp7 can

mdg3 is an LTR containing retrotransposon of
Drosophila melanogaster that is related to HIV.
mdg3 gag-NC was most related to HIV-2 nucleo-
capsid protein as well as HIV-1 nucleocapsid pro-
tein in having the characteristic 2 zinc fingers do-
mains of the CCHC type (Fig. 2B).14)

To confirm physical interaction of mdg3 gag-
NC with RECQ5/QE, we performed a GST pull
down assay by using various fragments of RECQ5/
QE. The mdg3 gag-NC bound the C-terminal do-
main of RECQ5/QE but not GST alone in the GST-
pull down assay (Fig. 3), thus providing indepen-
dent confirmation of the mdg3 gag-NC interaction
with RECQ5/QE identified by the yeast two-hybrid
system. The mdg3 gag-NC bound whole RECQ5/
QE and the acidic region within the C-terminal do-
main, but not the basic region. These data suggest
that the intact RECQ5/QE molecule interacts with
mdg3 gag-NC through the acidic region.

Since mdg3 gag-NC binds to the RECQ5QE
acidic region, which is adjacent to the helicase do-
main, this binding may have effects on helicase ac-
tivity of RECQ5/QE. To investigate functional rela-
tionship between RECQ5QE and mdg3 gag-NC, we
purified mdg3 gag-NC protein by tagging it with His,
as described in MATERIALS AND METHODS, and
examined its effect on the RECQ5/QE helicase re-
action (Fig. 4, lanes 3 and 5). The mdg3 gag-NC
protein enhanced the helicase activity of RECQ5/
QE (Fig. 4, lanes 4 and 6). In this condition, the mdg3
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RECQ5β can interact physically and functionally
because HIV in vitro studies are progressing well.

It is also impressed whether the nucleocapsid
protein and RECQ5/QE are involved in the choice
of integration sites on chromosomes. HIV-1 prefer-
entially integrates into some sites of chromatin.20–22)

The possible influence of host factors has been im-
plicated in the significant bias among potential inte-
gration sites in vivo.23–25) RECQ5/QE helicase is a
structure-specific DNA helicase,12,26) is capable of
recognizing specific DNA structures and might
recruit the integration machinery to certain regions
of the genome. Therefore, RECQ5/QE might be
involved in the preference of mdg3 integration
sites. This study would provide new insight into
retrotransposition.
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