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Vascular endothelial proteoglycans exhibit an
antithrombogenic activity by activating antithrombin
III and heparin cofactor II on the luminal surface of
the vascular wall. Calcium spirulan (Ca-SP) is a novel
sulfated polysaccharide isolated from the blue-green
alga Spirulina platensis. Since Ca-SP exhibits anti-
thrombin activity by activation of heparin cofactor II,
we hypothesized that the polysaccharide may influence
the metabolism of anticoagulant proteoglycans synthe-
sized by endothelial cells. When cultured bovine aor-
tic endothelial cells were treated with Ca-SP (50 µg/ml
or less) in the presence of [35S]sulfate for 24 hr, the ac-
cumulation of labeled proteoglycans in the cell layer
was decreased but that in the conditioned medium was
significantly increased, indicating that Ca-SP inhibits
the association of proteoglycans with vascular endot-
helial cell layers. Na-SP, which was prepared by re-
placement of calcium ion with sodium ion, showed an
equal effect. When the endothelial cells were labeled
with [35S]sulfate and then treated with Ca-SP (5 µg/ml
or more) for 1 hr in the absence of [35S]sulfate, the per-
centage of [35S]sulfate-labeled proteoglycans released
into the medium was markedly increased by Ca-SP.
DEAE-Sephacel ion exchange chromatography of
[35S]sulfate-labeled proteoglycans released into the
medium from Na-SP-treated cells indicated that Na-
SP stimulates the release of both heparan and chon-
droitin/dermatan sulfate proteoglycans from the cell
layer. Taking these results together it is suggested that
Ca-SP and Na-SP promote the release of proteoglycans
from vascular endothelial cells by inhibiting the asso-
ciation of the macromolecules with the cell layer.
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INTRODUCTION

Calcium and sodium spirulans (Ca-SP and Na-
SP, respectively) are novel sulfated polysaccharides
isolated from a hot water extract of the blue-green
alga Spirulina platensis.1,2) Structural analysis of Ca-
SP indicated that the polysaccharide is composed of
rhamnose, 3-O-methylrhamnose (acofriose), 2,3-di-
O-methylrhamnose, 3-O-methylxylose, uronic acids
and sulfate, and the backbone consists of 1,3-linked
rhamnose and 1,2-linked 3-O-methylrhamnose units
with some sulfate substitution at the 4-position; the
polymer is terminated at the nonreducing end by 2,3-
di-O-methylrhamnose and 3-O-methylxylose resi-
dues.3) Recently, it was confirmed that Ca-SP con-
tains two types of disaccharide repeating units, O-
hexuronosyl-rhamnose (aldobiuronic acid) and O-
rhamnosyl-acofriose with sulfated groups.4)

Ca-SP and Na-SP exhibit antithrombin activity
by activation of heparin cofactor II5) which is a physi-
ological inhibitor of thrombin, in a different mecha-
nism from that of heparin.6) In addition to the direct
action to heparin cofactor II, Ca-SP and Na-SP stimu-
late the synthesis of tissue plasminogen activator but
not plasminogen activator inhibitor type 1 in human
fetal lung fibroblasts,7) suggesting that the polysac-
charides may enhance the fibrinolytic activity in the
blood. However, it has been unclear whether Ca-SP
and Na-SP can modulate the antithrombogenic ac-
tivity of vascular endothelial cells.

Vascular endothelial cells are a cell type that
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covers the inner surface of the vascular wall and has
antithrombogenic properties by synthesizing and
secreting anticoagulant substances such as
prostacyclin8) (which has a potent preventative ac-
tivity against platelet aggregation) and tissue plas-
minogen activator9) (which converts plasminogen to
plasmin that degrades fibrin). Proteoglycans are
macromolecules which are composed of a core pro-
tein and one or more glycosaminoglycan side chains
as a common feature. Vascular endothelial cells syn-
thesize and secrete a large heparan sulfate
proteoglycan (HSPG) perlecan and a small chon-
droitin/dermatan sulfate proteoglycan (CS/DS PG)
biglycan.10) Perlecan and biglycan exhibit an anti-
thrombin activity by activation of antithrombin III
and heparin cofactor II, respectively.11,12)

Metabolism of proteoglycans has been impli-
cated in the modulation of endothelial cell functions
such as proliferation13) as well as abnormal behav-
ior of vascular smooth muscle cells.14) Recently, we
found that Ca-SP inhibits the repair of wounded
monolayers of vascular endothelial cells through
inhibition of the proliferation,15) indicating that Ca-
SP may influence the metabolism of proteoglycans
in the cells. The present study was undertaken to
clarify the alteration of proteoglycan metabolism by
Ca-SP and Na-SP as anticoagulant agents in vascu-
lar endothelial cells using a cell culture system of
the cells.

MATERIALS AND METHODS

Materials —–—  Vascular endothelial cells from bo-
vine aorta were purchased from Dainippon Pharma-
ceutical (Osaka, Japan). Dulbecco’s modified Eagle’s
medium (DMEM) and bovine fetal serum were from
Nissui Pharmaceutical (Tokyo, Japan) and Equitech-
Bio (Kerrville, TX, U.S.A.), respectively. ASF 301
medium was from Ajinomoto (Tokyo, Japan). Tis-
sue culture plates and dishes were obtained from
Iwaki Glass (Chiba, Japan). DEAE-Sephacel,
benzamidine, Tris base and phenylmethanesulfonyl
fluoride were from Sigma. [35S]NaSO4 (carrier free)
was purchased from ICN Biomedicals (Irvine, CA,
U.S.A.). Cetylpyridinium chloride (CPC) and other
reagents were from Nacalai Tesque (Kyoto, Japan).
Incorporation of [35S]Sulfate into Proteoglycans
—–—  Vascular endothelial cells were cultured in
DMEM supplemented with 10% fetal bovine serum
in 24-well culture plates or 100-mm dishes at 37°C
in 5% CO2 in air until confluent. The medium was

discarded and the cell layer was washed twice with
serum-free ASF 301 medium, then incubated at 37°C
for 24 hr in fresh serum-free ASF 301 medium with
Ca-SP or Na-SP (10, 20, 30, 40 or 50 µg/ml) in the
presence of [35S]sulfate (1 MBq/ml). After incuba-
tion, the conditioned medium was harvested and
solid urea was added to a concentration of 8 M. The
cell layer was washed twice with ice-cold Ca,
Mg-free phosphate-buffered saline and extracted
with 8 M urea solution containing 0.1 M 6-
aminohexanoic acid, 5 mM benzamidine, 10 mM
N-ethylmaleimide, 2 mM EDTA, 0.1 M phenyl-
methanesulfonyl fluoride, 0.1 M NaCl, 50 mM Tris
base and 2% Triton X-100 (pH 7.5) at 4°C for 15 min
and the cell layer extract was harvested by scraping
with a rubber policeman. The incorporation of
[35S]sulfate into proteoglycans was determined by
the CPC precipitation method.16) Briefly, portions of
the medium and cell layer extracts were spotted on
filter papers and washed five times for 1 hr in 1%
CPC with 0.05 M NaCl. The radioactivity of pre-
cipitated proteoglycans on the dried filter paper was
measured by liquid scintillation counting.
Release of [35S]Sulfate-labeled Proteoglycans
from Endothelial Cell Layers —–—   Confluent cul-
tures of vascular endothelial cells in 24-well culture
plates were labeled with [35S]sulfate (1 MBq/ml) for
24 hr. After labeling, the medium was discarded and
the cell layer was washed twice with serum-free ASF
301 medium, then incubated at 37°C for 1 hr with
Ca-SP (2.5, 5, 10, 25 µg/ml) in the absence of
[35S]sulfate. The radioactivity of proteoglycans re-
leased into the medium and remaining in the cell
layer was determined by the CPC precipitation
method as described above. The percentage of
[35S]sulfate-labeled proteoglycan release was calcu-
lated by dividing the radioactivity in the medium by
that found in both the medium and the cell layer.
DEAE-Sephacel Chromatography —–—  The re-
leased [35S]sulfate-labeled proteoglycans from the
cell layer treated with Na-SP (10 µg/ml) for 3 hr were
separated into HSPGs and CS/DS PGs on the basis
of differences in charge density by DEAE-Sephacel
ion exchange chromatography. The proteoglycans
extracted from the conditioned medium were applied
to DEAE-Sephacel (5 ml of resin) in 8 M urea buffer
(pH 7.5) containing 2 mM EDTA, 0.25 M NaCl,
0.5% Triton X-100, and 50 mM Tris base. Unbound
radioactivity was removed from the column by wash-
ing with 30 ml of the buffer. Bound radioactivity
was eluted from the column with a linear gradient
of 0.25–0.7 M NaCl in the urea buffer (total volume
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of 50 ml); in this chromatography, HSPGs and CS/
DS PGs were eluted at ~0.45 M and 0.55 M NaCl,
respectively.10)

Statistical Analysis —–—  Data on the accumulation
and release of [35S]sulfate-labeled proteoglycans
were analyzed for statistical significance by
ANOVA. p Values of less than 0.05 were consid-
ered to indicate statistically significant differences.

RESULTS

Figure 1 shows the accumulation of [35S]sulfate-
labeled proteoglycans in the cell layer and the con-
ditioned medium of vascular endothelial cells after

treatment with Ca-SP. As shown, the accumulation
in the cell layer was significantly decreased whereas
that in the conditioned medium was increased by
Ca-SP in a dose-dependent manner. A similar result
was obtained when the cells were treated with Na-
SP. These results indicated that Ca-SP and Na-SP
inhibit the association of proteoglycans newly syn-
thesized by vascular endothelial cells with the cell
layer.

To examine the possibility that Ca-SP and Na-
SP stimulate the release of proteoglycans associated
with the vascular endothelial cell layer, the cells
prelabeled with [35S]sulfate were treated with Ca-
SP and the release of proteoglycans was determined.
As shown in Fig. 2, the proteoglycan release was
significantly increased by Ca-SP in a dose-depen-
dent manner, indicating that Ca-SP not only inhibits
the association of newly synthesized proteoglycans
with the cell layer but also stimulates the release of
cell-associated proteoglycans to the liquid phase. Na-
SP also stimulates the release of proteoglycans from
endothelial cell layers in a fashion equal to that of
Ca-SP (not shown).

Figure 3 shows the DEAE-Sephacel profiles of
[35S]sulfate-labeled proteoglycans released from the
cell layers of vascular endothelial cells treated with
or without Na-SP. It was shown that Na-SP stimu-
lates the release of both HSPGs and CS/DS PGs from
the cell layer.

Fig. 1. Incorporation of [35S]Sulfate into Proteoglycans
Accumulated in the Cell Layer and the Conditioned
Medium of Vascular Endothelial Cells Treated with Ca-
SP (Upper Panels, Closed Circles) or Na-SP (Lower
Panels, Open Circles)

Confluent cultures of bovine aortic endothelial cells were incubated
at 37°C for 24 hr with Ca-SP or Na-SP (10, 20, 30, 40 or 50 µg/ml each)
in the presence of [35S]sulfate. Values are means ± S.E. of four samples.
Significantly different from the corresponding control, *p < 0.05;
**p < 0.01.

Fig. 2. Effect of Ca-SP on the Release of [35S]Sulfate-labeled
Proteoglycans from Vascular Endothelial Cell Layers

Confluent cultures of bovine aortic endothelial cells were labeled
with [35S]sulfate and then incubated at 37°C for 1 hr with Ca-SP (2.5, 5,
10 or 25 µg/ml) in the absence of [35S]sulfate. Values are means ± S.E.
of four samples. **Significantly different from the control, p < 0.01.
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DISCUSSION

In the present study, Ca-SP and Na-SP were
found to inhibit the association of proteoglycans with
vascular endothelial cells; as the result, release of
cell-associated proteoglycans was also promoted by
the polysaccharides. It was shown earlier that hep-
arin is a unique sulfated polysaccharide that stimu-
lates the release of proteoglycans from the vascular
endothelial cell layer.17) Other polysaccharides in-
cluding heparan sulfate, chondroitin sulfate,
dermatan sulfate and hyaluronan as well as low
molecular weight heparin do not exhibit such a
stimulatory activity,17) suggesting that stimulation of
endothelial proteoglycan release is not a general ef-
fect of (sulfated) polysaccharide. Thus, it is indicated
that Ca-SP and Na-SP are also unique sulfated
polysaccharides that accelerate endothelial
proteoglycan release like heparin. Since heparin is
postulated to exhibit the antithrombin activity not
only by activating antithrombin III and heparin co-
factor II in the blood but also by stimulating the re-
lease of anticoagulant heparan sulfate on the sur-
face of the vascular endothelium, it is likely that Ca-
SP and Na-SP also may exhibit antithrombin activ-
ity by a similar mechanism in the blood.

Proteoglycans synthesized and secreted by vas-
cular endothelial cells are involved in the regulation
of functions of the cells. For example, heparan sul-
fate chains of perlecan promote the binding of basic
fibroblast growth factor, which stimulates the pro-
liferation of the cells as an autocrine18) to the recep-
tor.19) On the other hand, the core protein of biglycan
binds transforming growth factor-β, which inhibits
endothelial cell proliferation,20) and sequesters the
cytokine from the cell surface receptor.21) Since it

was suggested that Ca-SP and Na-SP inhibit the as-
sociation of both HSPGs and CS/DS PGs, resulting
in a decrease in both types of newly synthesized
proteoglycans in endothelial cell layers, the polysac-
charides may influence the regulation of function of
the cells by basic fibroblast growth factor and trans-
forming growth factor-β. In fact, we have shown that
Ca-SP inhibits the proliferation of vascular endot-
helial cells by inducing a lower ability to respond to
stimulation by endogenous basic fibroblast growth
factor.15)

Although it has been reported that endothelial
proteoglycan synthesis is modulated by several fac-
tors including transforming growth factor-β1,10)

interleukin-1β22) and tumor necrosis factor-α,23) little
is known about the regulation of the secretion. It
was suggested that activation of protein kinase C
stimulates the release of either HSPGs and CS/DS
PGs from cultured vascular endothelial cells.24) Thus,
although it is possible that Ca-SP and Na-SP physi-
cochemically compete with HSPGs and CS/
DS PGs at their binding sites to other components
of extracellular matrix in endothelial cells, it is also
possible for the polysaccharides to influence the in-
tracellular signal transduction such as protein kinase
C by stimulation of some receptors. However, this
remains to be confirmed.

In conclusion, it was found that novel sulfated
polysaccharides from Spilurina platensis Ca-SP and
Na-SP inhibit the association of HSPGs and CS/DS
PGs with vascular endothelial cell layers. It is sug-
gested that either Ca-SP or Na-SP influences the
functions of vascular endothelial cells regulated by
autocrine and paracrine mediators such as basic fi-
broblast growth factor through alteration of the
proteoglycan metabolism. Further studies are nec-

Fig. 3. DEAE-Sephacel Ion-exchange Chromatography of [35S]Sulfate-labeled Proteoglycans Extracted from the Conditioned Medium
of Vascular Endothelial Cells Treated with Na-SP for 3 hr with a Linear Gradient of 0.25 to 0.7 M NaCl in 8 M Urea Buffer.

Confluent cultures of bovine aortic endothelial cells were labeled with [35S]sulfate and then incubated at 37°C for 3 hr with Na-SP (10 µg/ml) in the
absence of [35S]sulfate. Confluent cultures of bovine aortic endothelial cells were labeled with [35S]sulfate and then incubated at 37°C for 1 hr with Ca-
SP (2.5, 5, 10 or 25 µg/ml) in the absence of [35S]sulfate.
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essary to clarify whether or not Ca-SP and Na-SP
have beneficial effects as anticoagulant agents on
the blood coagulation-fibrinolytic system through
not only activation of heparin cofactor II but also
influence upon vascular endothelial cell function.
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