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Endothelin-1 Down-Regulates Expression of
Tropoelastin and Lysyl Oxidase mRNA in Cultured
Chick Aortic Smooth Muscle Cells
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Endothelin-1 (ET-1) is known as a potent stimulator of cell proliferation and as a vasoconstrictor. It is believed
that ET-1 contributes to the development of arterial diseases such as atherosclerosis. In this study, we demonstrated
the expression of tropoelastin and lysyl oxidase (LO) on gene levels as induced by ET-1 in cultured smooth muscle
cells (SMCs). ET-1 stimulated cell proliferation in a dose–dependent manner, and the level of this proliferation
increased about 1.3-fold at 100 nM of ET-1. ET-1 suppressed the tropoelastin protein synthesis in a dose–dependent
and time-dependent manner. In addition, ET-1 dose–dependently suppressed the tropoelastin and LO mRNA expres-
sion. The tropoelastin and LO mRNA levels decreased to about half and 4/5, respectively, at 100 nM of ET-1. The
inhibition of elastin synthesis was completely prevented by BQ123, an endothelin receptor A (ETA) antagonist.
These results indicate that ET-1 can modulate the tropoelastin and LO mRNA expression via an ETA receptor in
cultured SMC and that the regulator for elastin expression may play an important role in elastogenesis and SMC
proliferation during the development of atherosclerosis.
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INTRODUCTION

The regulation of cell proliferation is an impor-
tant event in normal development and in pathologi-
cal responses to injury. A number of growth factors
and cytokines are capable of stimulating prolifera-
tion of target cells by activating their receptors. How-
ever, the presence of growth factors or cytokines and
their receptors is not sufficient to induce cell prolif-
eration. The number of the local environment, ex-
tracellular matrix and intracellular interactions can
also regulate the response to a given growth factor
or cytokine.

Endothelin-1 (ET-1), which is a potent vasocon-
strictor, has been isolated from cultured porcine aor-
tic endothelial cells.1) ET-1 is mainly synthesized and
secreted from cultured porcine endothelial cells, and
it is known that ET-1 stimulates cell proliferation.2)

The effects of ET-1 are mediated via two subtypes
of endothelin receptors, endothelin A (ETA)3) and
endothelin B (ETB)4) receptors, which have been

cloned and characterized. ETA membrane receptors
have a high affinity for ET-1 and are mainly present
in vascular smooth muscle cells in order to mediate
vasoconstriction.3) The ETA receptor is located pre-
dominantly on vascular smooth muscle cells
(SMCs). It is a classical heptathelical G-protein
coupled receptor that activates phospholipase C to
cause hydrolysis of phosphatidyl inositol and gen-
eration of cytosolic inositol triphosphate and mem-
brane-bound diacylglycerol. It has been reported that
production of ET-1 occurs in atherosclerosis5,6) and
that ETA receptor antagonists or endothelin-convert-
ing enzyme inhibitors suppress the formation of
atheroma.7) These observations suggest the possibil-
ity that ET-1 may stimulate cell proliferation and
development of atherosclerosis.

The regulation of accumulation of extracellular
matrices is fundamental important to mature tissues
and to an understanding of connective tissue diseases
such as atherosclerosis. Elastin is responsible for the
characteristic elastic properties of many tissues in-
cluding skin, lung and large blood vessels. Elastin
is synthesized as a soluble precursor, tropoelastin,
by aortic smooth muscle cells. Tropoelastin is asso-
ciated with microfibrils, such as fibrillin-1, fibrillin-
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2 or the microfibril associated glycoprotein (MAGP),
and then cross-links with other tropoelastin mol-
ecules by lysyl oxidase (LO) to form elastic fiber.
Elastin synthesis is modulated by a number of fac-
tors including transforming growth factor β (TGF-
β),8) insulin-like growth factor (IGF),9) interleukin-1
(IL-1),10) epidermal growth factor (EGF),11) gluco-
corticoid,12) and c-guanosine 5′-monophosphate (c-
GMP).13)

Abnormal metabolism of elastin has been asso-
ciated with hypertension14) and atherosclerosis,15) and
elastin may play a key role in the development of
these diseases. However, there is little report about
the gene expression concerning the elastic fiber as-
sembly in the development of atherosclerosis. There-
fore, in the present study we investigated the
tropoelastin and LO gene expression by ET-1 in cul-
tured chick SMCs.

MATERIALS AND METHODS

Materials —–—  [3,4-3H] Valine (1.5 TBq/mmol) and
[α-32P] deoxycytidine 5′-triphosphate (dCTP)
(110 TBq/mmol) were supplied by Amersham. ET-
1 was purchased from the Peptide Institute, Inc. (Ja-
pan), BQ123 was obtained from Alexis, and
Dulbecco’s modified Eagle’s medium (DMEM),
valine-free DMEM, fetal bovine serum (FBS), and
dialyzed FBS were obtained from Gibco.
Cell Culture and Proliferation —–—  SMCs were
isolated from 20-day-old chick embryonic aortas by
serial enzyme digestion with bacterial collagenase
(Sigma) and pancreatic elastase (Sigma) as previ-
ously described.16) They were seeded at a density of
2 × 106 cells/35-mm-diameter Petri dish (Falcon
Plastics) and grown to 80% of confluence in DMEM
supplemented with 10% FBS. The FBS and dialyzed
FBS used in this study were not heat-inactivated.
SMCs grown to 80% of confluence were incubated
for 24 hr in DMEM containing 0.5% dialyzed FBS
to induce them to the G0 phase (quiescent). The qui-
escent SMCs were cultured for 24 hr in DMEM con-
taining 0.5% dialyzed FBS with various concentra-
tions of ET-1 and then were harvested with 0.25%
trypsin. The cell number was determined with a
hemocytometer. The data are presented as a
means ± standard error (S.E.). Statistically signifi-
cant differences between groups were analyzed us-
ing Student’s t test, where p < 0.05 was considered
statistically significant. Statview software (Abacus,
Berkeley, CA, U.S.A.) was used for all statis-

tical work.
Metabolic Labeling and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE)
—–—  The quiescent SMCs were treated with vari-
ous concentrations of ET-1 in DMEM containing
0.5% dialyzed FBS for 24 hr or with 100 nM ET-1
in DMEM containing 0.5% dialyzed FBS for vari-
ous periods of time. Quiescent SMCs were pretreated
with 10 µM BQ123, as an inhibitor of endothelin
receptor A (ETA), in DMEM containing 0.5% dia-
lyzed FBS for 30 min and then treated with a com-
bination of 10 µM BQ123 and 10–7 M ET-1 in
DMEM containing 0.5% dialyzed FBS for 24 hr. The
cells were labeled with 25 µCi/ml of [3,4-3H] valine
for the last 6 hr of treatment in the valine-free
DMEM. The culture medium was precipitated with
ammonium sulfate (176 mg/ml) in the presence of
protease inhibitor cocktails [1 mM EDTA, N-
ethylmaleimide (NEM) and phenylmethylsulfonyl
fluoride (PMSF)]. The protein from the medium was
resuspended in 35 µl of Laemmli sample buffer con-
taining dithiothreitol (DTT) and incubated at 100°C
for 5 min. The samples were electrophoresed on 4–
15% SDS-polyacrylamide gels. Gels were then dried
and exposed to XAR-5 X-ray film (Eastman Kodak
Co., U.S.A.), and then fluorographed and scanned
with a densitometer (Cliniscan, Helena Laboratorie,
U.S.A.). The amount of samples applied to the gels
was normalized according to cell number. The den-
sity of elastin bands per total bands was used as a
measure of relative synthesis.
Northern Blot Analysis —–—  Total RNA was iso-
lated from cells according to a previously described
procedure17) and after being adjusted to a concentra-
tion of 2 µg/µl, stored at –80°C degree until use. The
total RNA was denatured for 1 hr at 50°C in deion-
ized 1 M glyoxal/10 mM phosphate buffer, pH 7.0,
and electrophoresed on 1% agarose gel, then was
blotted to N+ nylon filters (Amersham, U.K.). The
membranes were hybridized for 18 hr at 42°C to 32P-
labeled probes in 50% formamide, 5 × 0.15 M so-
dium cloride and 0.015 M sodium citrate (SSC),
5 × Denhardt’s solution, 0.1% SDS, and 250 µg/ml
t-RNA. The following cDNA probes which were
radioactively labeled by random priming
(Amersham, U.K.) to specific activity of �108 dpm/
µg DNA were used: chicken elastin (pTE2),18) and
β-actin (pA1).19) 300 bp of Chick LO cDNA20) were
amplified by reverse transcriptase–polymerase chain
reaction (RT–PCR) using a sense primer (5′-
ACGGACGATAACCCCTACTACAACT-3′) and an
anti-sense primer (5′-CGCACTATGTTGTTGGAG-
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TAATCAG-3′). The filters were washed for 30 min
at a stringency of 1 × SSC/0.1% SDS followed by
0.1 × SSD/0.1% SDS and exposed at –80°C to X-
ray films (Fuji RX, Japan) with an intensifying
screen (Kodak Lanex Regular, U.S.A.). The autora-
diograms were scanned with a densitometer. The
density of tropoelastin and LO bands was normal-
ized according to β-actin bands as a measure of rela-
tive expression.

RESULTS

Cell Proliferation by ET-1
To begin with, we determined the effect of ET-1

on cell proliferation. Quiescent SMCs were exposed
to 1–100 nM ET-1 for 24 hr of exhibited prolifera-
tion compared to control. The effect was most pro-
nounced at 100 nM ET-1, which resulted in 30%
stimulation of proliferation (p < 0.01; Fig. 1). These
results are similar to those reported for human skin
fibroblasts in culture.21)

Tropoelastin Synthesis by ET-1
The changes in tropoelastin protein synthesis in

SMCs brought about by drug treatment were detected
by SDS-PAGE following a metabolic labeling as-
say with [3H] valine. Immunoblotting analysis us-
ing monoclonal antibody for tropoelastin revealed
that the bands, which indicated with an arrow, are
related to tropoelastin.22) Moreover, we previously
reported that bands of tropoelastin were confirmed
by incorporations of radiolabeled cysteine and va-

line, but not incorporations of radiolabeled mannose,
glucose, and methionine.23) Since complete amino
acid sequence deduced from chicken cDNA dem-
onstrated that tropoelastin has no sugar moiety nor
methionine residue and has two cysteine residues
only near the carboxyl-terminal end.18,24,25) Confluent
SMCs were cultured with FBS-free DMEM for 24 hr
to induce the cells to enter the G0 phase,26) and then
the culture medium was replaced with FBS-free
DMEM containing 0, 1, 10 or 100 nM of ET-1. Af-
ter 18 hr, newly synthesized proteins were labeled
with [3,4-3H] valine. ET-1 inhibited tropoelastin syn-
thesis in the medium in a dose–dependent manner
without changing other secreted proteins, and the
level of tropoelastin synthesis was about 50% at a
concentration of 100 nM of ET-1 (Fig. 2). We also
determined the amount of tropoelastin synthesis in-
duced by ET-1 in the medium in a time-dependent
manner. ET-1 inhibited about 25% of tropoelastin
synthesis after 6 hr of treatment and 50% after 24 hr
of treatment (Fig. 3).

Expression of Tropoelastin and LO mRNA by
ET-1

To examine the regulation of tropoelastin and
LO mRNA expression by ET-1, confluent cultures
of SMCs maintained in DMEM without FBS were
incubated with various concentrations of ET-1 for
24 hr. Tropoelastin and LO mRNA levels were esti-
mated by northern blot hybridization. ET-1 reduced
elastin and LO mRNA levels in a dose–dependent
manner, and the maximal inhibition was detected at
a concentration of 100 nM (Fig. 4A). Quantification
of tropoelastin and LO mRNA, after correction for
β-actin mRNA levels, revealed that the maximal re-
duction in tropoelastin and LO mRNA to approxi-
mately 40% and 80% of the level in untreated con-
trol cells occurred after treatment with 100 nM of
ET-1 (Fig. 4B).

Effect of ETA Blockers on ET-1-Induced Elastin
Synthesis

In order to determine whether the inhibition of
tropoelastin synthesis by ET-1 is dependent on ETA

or not, confluent cultures of SMCs were treated with
ET-1 (100 nM) alone or in combination with BQ-
123 (10 µM), as a specific inhibitor of ETA, in
DMEM without FBS. In these cells, treatment with
BQ-123 alone had no effect on tropoelastin synthe-
sis. However, exposure of SMCs to BQ-123 potently
prevented the inhibitory effect of ET-1 on
tropoelastin synthesis (Fig. 5).

Fig. 1. Effect of Endothelin-1 on Cell Proliferation
SMCs were plated at a density of 2 × 106 cells/35 mm-diameter Petri

dish and cultured in DMEM supplemented with 10% FBS. 80% of
confluence SMCs were treated for 24 hr with 0, 1, 10, 100 nM of
endothelin-1 in FBS-free DMEM, and then were harvested by trypsin.
Cell number was counted by Buker-Turk hemocytometer. Each value
indicates the means ± S.E. from triplicate experiments; **p < 0.01
(comparison with control).
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Fig. 3. Effect of ET-1 on Elastin Synthesis in Smooth Muscle Cells
(A), SMCs were treated for 0 (lane 1), 6 (lane 2), 12 (lane 3) and 24 hr (lane 4) with 100 nM endothelin-1 in FBS-free DMEM, then labeled with [3H]

valine for the last 6 hr of treatment. The proteins from culture medium analyzed by 2–15% SDS-PAGE, and visualized by fluorography. (B), The arrow
indicates the position of tropoelastin. The fluorograms were quantitated with a scanning densitometer. Each value indicates the average from triplicate
experiments.

Fig. 2. Effect of ET-1 on Elastin Synthesis in Smooth Muscle Cells
(A), SMCs were treated for 24 hr with 0 (lane 1), 1 (lane 2), 10 (lane 3), 100 nM (lane 4) of ET-1 in FBS-free DMEM, then labeled with [3H] valine

for the last 6 hr of treatment. The proteins from culture medium analyzed by 2–15% SDS-PAGE, and visualized by fluorography. (B), The arrow indicates
the position of tropoelastin. The fluorograms were quantitated with a scanning densitometer. Each value indicates the average from triplicate experiments.

DISCUSSION

SMC proliferation is a key event in the develop-
ment of atherosclerosis. Several studies have re-
vealed that elastin synthesis is inversely related to
cell proliferation. It has been reported that potent
stimulators of cell proliferation, such as 12-O-
tetradecanoylphorbol 13-acetate (TPA),27) angio-

tensin II28) or EGF,11) inhibit elastin synthesis, and
potent inhibitors of cell proliferation, such as
minoxidil,29) retinoic acid30) or heparin,31) stimulate
elastin synthesis. In this study, our results show that
ET-1 stimulates SMC proliferation and reduces
tropoelastin synthesis in mRNA levels as previously
reported.

ET-1 reduces tropoelastin and LO mRNA expres-

A                                                           B
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A                                                   B
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sion, and BQ 123, a specific ETA receptor antago-
nist,32) can effectively prevent the effect of ET-1 on
tropoelastin synthesis. ET-1 binds to ETA receptors
on the cell surface, and these receptors are classical
heptathelical G-protein coupled receptors that acti-
vate phospholipase C to cause hydrolysis of phos-
phatidyl inositol and generation of cytosolic inositol
triphosphate and membrane-bound diacylglycerol,
which accelerate protein kinase C (PKC) activity and
intracellular Ca2+ concentration.33) It has been re-

ported that a PKC activator, such as TPA, reduces
elastin expression by a posttranscriptional mecha-
nism. It has also been postulated that TPA may con-
trol the tropoelastin mRNA via unique cis-acting
sequences of the 3′ untranslated region (3′UTR).27)

We have demonstrated that ET-1-induced reduction
of elastin expression is mediated by the activation
of PKC activity via ETA receptors.

LO is a key participant in the accumulation of
insoluble fibers of elastin and collagen by virtue of

Fig .4. Effect of ET-1 on Tropoelastin (TE), LO and β-Actin mRNA Levels in SMCs
(A), RNA was extracted from SMCs treated for 24 hr with 0 (lane 1), 1 (lane 2), 10 (lane 3), 100 nM (lane 4) of ET-1. Ten micrograms RNA was

resolved on 1% agarose gel electrophoresis, blotted onto membranes and hybridized with 32P-labeled chick elastin, LO and β-actin cDNA probes. The
filters were washed and visualized by autoradiography. (B), The autoradiograms were quantitated with a scanning densitometer. Open bars represent the
quantitative tropoelastin mRNA. Black bars represent the quantitative LO mRNA. Each value indicates the average from triplicate experiments.

Fig. 5. Effect of BQ123 on ET-1-Mediated Elastin Suppression
(A), SMCs were treated with vehicle (lane 1), 100 nM of ET-1 (lane 2), 10 µM of BQ123 (lane 3) or combination of 100 nM of ET-1 and 10 µM of

BQ123 (lane 4) for 24 hr in the absence of FBS, and labeled [3H] valine for the final 6 hr. The proteins from culture medium analyzed by 2–15% SDS-
PAGE, and visualized by fluorography. (B), The arrow indicates the position of tropoelastin. The fluorograms were quantitated with a scanning densitometer.
Each value indicates the average from triplicate experiments.
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its role in the initiation of the covalent cross-link-
ages between and within individual molecules
comprising these fibers. This enzyme oxidizes spe-
cific lysine residues within these matrix molecules
into peptidyl-α-aminoadipic-δ-semialdehyde. Sub-
sequent spontaneous condensations of the aldehyde
residues produce the cross-linkages that account for
the stability of these fibrous proteins.34) The expres-
sion of the LO gene is regulated at transcriptional or
post-transcriptional levels by a number of agents or
conditions, or both, relevant to the normal and/or
diseased arterial wall. LO expression is significantly
up-regulated by TGF-β1,35,36) platelet-derived growth
factor (PDGF)37) and cAMP.38) It has been reported
that cAMP inhibits the proliferation of vascular
smooth muscle cell (VSMC).39) LO expression is sig-
nificantly stimulated upon reduction of SMC prolif-
eration in culture either by serum starvation or by
the addition of TGF-β1.35) In the present study, ET-1
inhibited LO mRNA expression in a dose–depen-
dent manner. Together with these reports, our results
may suggest that modulation of LO mRNA expres-
sion is inversely associated with cell proliferation.

It has been reported that amounts of desmosine
or isodesmosine, which are cross-linking amino ac-
ids in elastic fiber, decrease in human atheroscle-
rotic plaques.40,41) ET-1 is known as an activator of
atherosclerosis. Therefore, the results of this paper
suggest that inhibition of tropoelastin and LO mRNA
expression by ET-1 may cause inhibition of the elas-
tin cross-linking processes in the aorta and result in
a destabilization of the aortic wall such as occurs in
the disease of atherosclerosis.
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