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Urinary and biliary metabolites of male Wistar rats dosed orally with 2,4-dinitrobenzyl glucuronide (2,4-DNB-
G) and 2,6-dinitrobenzyl glucuronide (2,6-DNB-G) which are major compounds excreted in bile after administra-
tion of carcinogenic 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) were examined by HPLC. The
object of this study is to determine whether mutagenic 2,4-dinitrobenzaldehyde (2,4-DNBAl) and genotoxic 2-
amino-6-nitrobenzyl alcohol (2A6NB) are produced in the secondary metabolism of 2,4-DNB-G and 2,6-DNB-G.
Data from HPLC indicated that 2,4-DNBAl (about 1%), in addition to 2,4-DNB-G (about 8.6%), 2,4-dinitrobenzyl
alcohol (2,4-DNB, about 0.1%), two aminonitrotoluenes (about 0.2%), two aminonitrobenzyl alcohols (about 0.1%),
4-acetylamino-2-nitrobenzoic acid (4AA2NBA, about 7.4%) and 4-acetylamino-2-aminobenzoic acid (4AA2ABA,
about 1.8%) was excreted in the urine or bile after dosing 2,4-DNB-G. This result, together with previous findings,
indicates that 2,4-DNBAl is produced not only by oxidation of 2,4-DNB formed from 2,4-DNT, but by oxidation of
2,4-DNB formed from 2,4-DNB-G excreted in bile. In addition, the formation of carcinogenic 2,4-diaminotoluene
(2,4-DAT) was ascertained from the metabolic pathway of 2,4-DNB-G based on the metabolites detected. No 2A6NB
was found in the urine and bile after dosing 2,6-DNB-G. However, 2-amino-6-nitrobenzoic acid (2A6NBA, about
0.2%), in addition to 2,6-dinitrobenzyl alcohol (2,6-DNB, < 0.1%) and 2,6-DNB-G (about 18%), was detected in
the urine or bile after dosing 2,6-DNB-G. This result, together with previous findings, indicates that 2A6NB is an
intermediate in the production of 2A6NBA from 2,6-DNB, and further suggests that the production of 2A6NB in the
metabolism of 2,6-DNT is coupled to the enterohepatic circulation of 2,6-DNB. The results of this investigation
suggest that the production of 2,4-DNBAl and 2,4-DAT, and 2A6NB from 2,4-DNB-G and 2,6-DNB-G may play a
role in the hepatocarcinogenicities of 2,4-DNT and 2,6-DNT.

Key words —–— 2,4-dinitrobenzyl glucuronide, 2,6-dinitrobenzyl glucuronide, secondary metabolism, 2,4-
dinitrobenzaldehyde, mutagenic metabolite

INTRODUCTION

Carcinogenic 2,4-dinitrotoluene (2,4-DNT)1) and
2,6-dinitrotoluene (2,6-DNT),2) which are major con-
stituents of technical grade DNT used in the manu-
facture of explosives and toluene diisocyanate, an
intermediate in the production of polyurethane
foams,3) have been shown to be excreted mainly in
the bile as 2,4-dinitrobenzyl glucuronide (2,4-DNB-
G) and 2,6-dinitrobenzyl glucuronide (2,6-DNB-G)
in bile duct-cannulated male Wistar rat.4) Studies with
isolated perfused Fischer 344 rat livers have also
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shown that the major compounds excreted in bile
after dosing of 2,4-DNT and 2,6-DNT are the glu-
curonides of 2,4-dinitrobenzyl alcohol (2,4-DNB)
and 2,6-dinitrobenzyl alcohol (2,6-DNB) respec-
tively from the observation that 2,4-DNB and 2,6-
DNB are liberated by incubation of bile with β-glu-
curonidase.3,5)

The active metabolite responsible for the carci-
nogenicity of 2,4-DNT has not yet been reported.
2,4-Dinitrobenzaldehyde (2,4-DNBAl), which is
mutagenic in the Ames assay using Salmonella
typhimurium strains TA 98 and TA100,6) and also
induces the malignant morphological transformation
of C3H/10T 1/2 clone 8 cells7) has been shown to
be a minor biliary metabolite of 2,4-DNT in the bile
duct-cannulated Wistar rat.4,8) This observation in-
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dicates that 2,4-DNBAl is produced by oxidation of
2,4-DNB formed from 2,4-DNT in liver. While, it is
reported that 2-amino-6-nitrobenzyl alcohol
(2A6NB) is a presumable precursor related to the
hepatocarcinogenicity of 2,6-DNT in the male
Fischer 344 rat.9) No 2A6NB has been found in the
bile3) or urine5) of the rat after dosing 2,6-DNT.

In vitro study of intestinal content of male Wistar
rats has shown that 2,4-DNB-G and 2,6-DNB-G are
transformed by anaerobic incubation into 2,4-DNB,
2-amino-4-nitrobenzyl alcohol (2A4NB), 4-amino-
2-nitrobenzyl alcohol (4A2NB) and 2,6-DNB,
2A6NB, respectively.4) This observation implies that
2,4-DNB and 2,6-DNB formed in intestine are trans-
ported to liver and metabolized to mutagenic 2,4-
DNBAl and genotoxic 2A6NB.

Thus, for a better understanding of the
carcinogenicities of 2,4-DNT and 2,6-DNT, it is
important to determine whether 2,4-DNBAl and
2A6NB are produced in the subsequent metabolism
of 2,4-DNB-G and 2,6-DNB-G excreted in bile. For
this purpose, we have examined the urinary and bil-
iary metabolites of male bile duct-cannulated Wistar
rats dosed orally with 2,4-DNB-G and 2,6-DNB-G
by HPLC.

MATERIALS AND METHODS

Chemicals —–— 2,4-DNT, 2,6-DNT, 2-amino-4-
nitrotoluene (2A4NT), 4-amino-2-nitrotoluene
(4A2NT), 2-amino-6-nitrotoluene, 2,4-
diaminotoluene (2,4-DAT), 2,6-diaminotoluene, 2,4-
dinitrobenzoic acid and 4-nitroanthranilic acid (2-
amino-4-nitrobenzoic acid) were obtained from
Wako Pure Chemical Industries, Ltd. (Osaka, Japan)
and purified by recrystallization. 2,4-DNBAl and
2,6-dinitrobenzaldehyde (2,6-DNBAl) were ob-
tained from Aldrich Chemical Co., Inc. (Milwaukee,
U.S.A.) and purified by recrystallization. All other
chemicals or solvents used were of analytical grade.

2,4-DNB, 2,6-DNB, potassium 2,4-DNB-G,
potassium 2,6-DNB-G, 2A4NB, 4A2NB,
2A6NB, 2,6-dinitrobenzoic acid, 2-acetylamino-
4-nitrotoluene, 4-acetylamino-2-nitrotoluene,
2-acetylamino-6-nitrotoluene, 2-acetylamino-
4-aminotoluene, 4-acetylamino-2-aminotoluene,
2-acetylamino-6-aminotoluene, 2,4-diacetyl-
aminotoluene, 2,6-diacetylaminotoluene, 4-amino-
2-nitrobenzoic acid, 2-amino-6-nitrobenzoic acid
(2A6NBA), 2,4-diaminobenzoic acid, 2,6-
diaminobenzoic acid, 2-acetylamino-4-nitrobenzoic

acid, 4-acetylamino-2-nitrobenzoic acid
(4AA2NBA), 2-acetylamino-6-nitrobenzoic acid, 2-
acetylamino-4-aminobenzoic acid, 4-acetylamino-2-
aminobenzoic acid (4AA2ABA), 2-acetylamino-6-
aminobenzoic acid, 2,4-diacetylaminobenzoic acid,
2,6-diacetylaminobenzoic acid and 2,4-DNBAl-
phenylhydrazone were prepared as described previ-
ously.10–12)

Administration of 2,4-DNB-G and 2,6-DNB-G
—–—  Male eight-week old Wistar rats (weighing
200–220 g, Sankyo Laboratories Co.) were dosed
orally with a solution of potassium 2,4-DNB-G and
potassium 2,6-DNB-G (90 mg/kg each) in 0.9%
NaCl (1 ml), and housed individually in metabolic
cages with free access to water and commercial rat
diet (F-2, Sankyo Laboratories Co.). Five rats per
xenobiotic were dosed for each administration. Urine
samples were collected over 24 h and stored
at – 30°C. Bile duct-cannulated rats were prepared
by the method of Abou-el Makarem et al.13) using
polyethylene tubing (SP 10, 0.21 mm int. diameter,
0.6 mm overall diameter). The cannulated rats were
dosed orally with a solution of 2,4-DNB-G or 2,6-
DNB-G (90 mg/kg each) in 0.9% NaCl (1 ml), kept
individually in Bollman cages and allowed a com-
mercial rat diet (F-2) and water ad libitum. Five rats
per xenobiotic were dosed for each administration.
Bile samples were collected over 24 h, and stored
at – 30°C.
Analysis of Urinary and Biliary Conjugates by
HPLC —–—  The stored 24-h urine (5 ml) and bile
samples (5 ml) were filtered using a 0.45 µm mem-
brane filter. Aliquots (10 µl) of the filtrates were in-
jected into a high-performance liquid chromatograph
equipped with a multi-wavelength UV monitor
(Hewlett Packard HP 1100). A reversed-phase col-
umn packed with TSK gel ODS-80 TM
(4.6 mm × 150 mm, particle size 5 µm; Toso Co.,
Tokyo, Japan) was used with mobile phases A or E
(Tables 1 and 2). HPLC operating conditions were
as follows: flow rate, 1 ml/min; UV monitor, 250 nm;
column temperature, 25°C. Detection of conjugates
was carried out by the co-chromatography of samples
and blanks with authentic compounds. The limit of
detection for 2,4-DNB-G and 2,6-DNB-G was
0.2 µg/ml. Quantities of conjugates were determined
from standard curves plotted as peak areas calcu-
lated automatically by HP 1100 Chemstation soft-
ware. A linear relationship between the amount of
each compound and peak area was found over the
range 0.4–400 µg/ml.
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Table 1. Retention Times of 2,4-Dinitrotoluene (2,4-DNT) and Its Derivatives on HPLC

Retention time (min), mobile phasea)

Compound
A B C D

2,4-Diaminotoluene 2.0 8.4

2-Acetylamino-4-aminotoluene 2.2 9.5

2-Amino-4-nitrobenzyl alcohol (2A4NB) 12.4 21.0

4-Amino-2-nitrobenzyl alcohol (4A2NB) 6.3 11.0

4-Acetylamino-2-aminotoluene 3.3 18.3

2,4-Diacetylaminotoluene 6.3 20.0

2-Acetylamino-4-nitrotoluene 24.6 5.2

2,4-Dinitrobenzyl alcohol (2,4-DNB) 30.0 6.8

4-Acetylamino-2-nitrotoluene 61.2 7.5

2,4-Dinitrobenzaldehyde (2,4-DNBAl) 8.6

4-Amino-2-nitrotoluene (4A2NT) 9.4

2-Amino-4-nitrotoluene (2A4NT) 10.2

2,4-Dinitrotoluene (2,4-DNT) 19.3

2,4-Diaminobenzoic acid 3.5 6.0

4-Amino-2-nitrobenzoic acid 8.0 8.1

4-Acetylamino-2-aminobenzoic acid (4AA2ABA) 6.3 11.8

2-Acetylamino-4-aminobenzoic acid 8.9 16.1

4-Acetylamino-2-nitrobenzoic acid (4AA2NBA) 5.9 17.2

2,4-Diacetylaminobenzoic acid 11.4 45.8

2,4-Dinitrobenzoic acid 5.5 36.7

2-Amino-4-nitrobenzoic acid 42.6 53.3

2-Acetylamino-4-nitrobenzoic acid 27.9

Potassium 2,4-dinitrobenzyl glucuronide 13.2

(Potassium 2,4-DNB-G)

a) A, 10 mM potassium phosphate buffer (pH 3)–acetonitrile (85 : 15); B, 4 mM sodium phosphate buffer (pH 7.4)–methanol (85 : 15); C,
water–acetonitrile (65 : 35); D, 0.1% tetrabutylammonium bromide in water–methanol (80 : 20).

Table 2. Retention Times of 2,6-Dinitrotoluene (2,6-DNT) and Its Derivatives on HPLC

Retention time (min), mobile phasea)

Compound
E B F G

2,6-Diaminotoluene 2.0 4.7

2-Acetylamino-6-aminotoluene 2.5 5.6

2,6-Diacetylaminotoluene 5.0 7.1

2-Amino-6-nitrobenzyl alcohol (2A6NB) 16.6 16.9 4.4

2-Acetylamino-6-nitrotoluene 31.0 5.7

2,6-Dinitrobenzyl alcohol (2,6-DNB) 26.0 7.0

2-Amino-6-nitrotoluene 12.3

2,6-Dinitrobenzaldehyde (2,6-DNBAl) 12.9

2,6-Dinitrotoluene (2,6-DNT) 30.0

2,6-Diaminobenzoic acid 2.0 3.2

2,6-Dinitrobenzoic acid 3.0 3.9

2-Acetylamino-6-nitrobenzoic acid 4.8 8.0

2-Acetylamino-6-aminobenzoic acid 5.2 9.9

2-Amino-6-nitrobenzoic acid (2A6NBA) 11.5 13.9

2,6-Diacetylaminobenzoic acid 8.0 22.0

Potassium 2,6-dinitrobenzyl glucuronide 14.0

(Potassium 2,6-DNB-G)

a) E, 10 mM potassium phosphate buffer (pH 3)–acetonitrile (90 : 10); F, water–acetonitrile (70 : 30); G, 10 mM potassium phosphate buffer
(pH 3)–acetonitrile (95 : 5). B is the same as in Table 1.
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Analysis of Urinary and Biliary Unconjugated
Metabolites by HPLC —–—  The stored 24-h urine
and bile samples (5 ml) were adjusted to pH 11 with
2 M Na2CO3 and extracted three times with
diethylether (30 ml) (neutral-basic fractions). The
extracted urine and bile samples were adjusted to
pH 2 with 2 M HCl and extracted three times with
diethylether (30 ml) (acidic fractions). The ethereal
neutral-basic and acidic fractions were dried over
anhydrous Na2SO4, and the solvents evaporated off
under a stream of nitrogen, and the residue was dis-
solved in 10 ml of methanol–water (30 : 70). Aliquots
(5–50 µl) of these solutions were injected into an
HPLC. The HPLC conditions were the same as those
described above except for mobile phases of B, C,
D, F and G (Tables 1 and 2). The detection of me-
tabolites was carried out by comparing the chromato-
grams of samples from treated rats with those of
blank samples, and by the co-chromatography of
samples with authentic compounds. The detection
limit of each authentic compound was 0.04 µg/ml.
The range of linearity of each authentic compound
was 0.04–200 µg/ml.

RESULTS

Tables 1 and 2 show the retention times of 2,4-
DNB-G and 2,6-DNB-G, and their possible metabo-
lites in HPLC using various mobile phases. Neu-
tral-basic compounds, acidic compounds and con-

jugated compounds were separated in the mobile
phases of B, C or F; D or G; A or E, respectively.

Figure 1 shows a representative high-perfor-
mance liquid chromatogram of the neutral-basic frac-
tion from urine of rats dosed orally with 2,4-DNB-
G. Peaks with retention times of 6.8 and 8.6 min,
which co-eluted with authentic 2,4-DNB and 2,4-
DNBAl, were detected in the neutral-basic fraction
by HPLC using mobile phase of C. The excretion of
2,4-DNBAl was also confirmed chromatographically
by detecting the peak which co-elutes with authen-
tic 2,4-DNBAl-phenylhydrazone from the neutral-
basic fraction treated with phenylhydrazine. Two
aminonitrobenzyl alcohols (2A4NB and 4A2NB)
were detected in the neutral-basic fraction by using
mobile phase of B. In addition, 4AA2NBA and
4AA2ABA were detected in the acidic fraction and
2,4-DNB-G was detected in the filtered urine, re-
spectively. While, 2,6-DNB-G (filtered urine), 2,6-
DNB (neutral-basic fraction) and 2A6NBA (acidic
fraction) were detected in the urine after dosing 2,6-
DNB-G.

As shown in Fig. 2, 2,4-DNB, 2,4-DNBAl,
2A4NT and 4A2NT were detected in the neutral-
basic fraction of bile following administration of 2,4-
DNB-G. The excretion of 2,4-DNBAl was also con-
firmed by HPLC using authentic 2,4-DNBAl-
phenylhydrazone and neutral-basic fraction treated
with phenylhydrazine, as described above. Both
2A4NB and 4A2NB were also detected in the neu-
tral-basic fraction by using mobile phase B. In addi-

Fig. 1. High-Performance Liquid Chromatogram of Neutral-
Basic Fraction from Urine of Rats Dosed with Potassium
2,4-Dinitrobenzyl Glucuronide (Potassium 2,4-DNB-G)

—–— , sample; - - - - - -, blank. Arrows show the retention times of
authentic compounds.

Fig. 2. High-Performance Liquid Chromatogram of Neutral-
Basic Fraction from Bile of Rats Dosed with Potassium
2,4-Dinitrobenzyl Glucuronide (Potassium 2,4-DNB-G)

—–— , sample; - - - - - -, blank. Arrows show the retention times of
authentic compounds.
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tion, 2,4-DNB-G and 4AA2NBA were detected in
the filtered bile and in the acidic fraction, respec-
tively. Compounds detected in bile after dosing 2,6-
DNB-G were 2,6-DNB (neutral-basic fraction) and
2,6-DNB-G (filtered bile). The amounts of urinary
and biliary compounds detected are shown in
Table 3. The proposed metabolic pathways of 2,4-
DNB-G and 2,6-DNB-G which are based on the re-
sults of Table 3 and the previous findings from in
vitro study with rat intestinal content4) are shown in
Figs. 3 and 4, respectively.

It has been demonstrated that various
xenobiotics, including aminocephalosporin antibi-
otics14,15) and aminobenzoic acids,16) are absorbed
from the rat intestinal lumen by a carrier-mediated
transport system. Thus, although it remains to be
determined whether 2,4-DNB-G and 2,6-DNB-G
administered are absorbed from the intestine, it is
possible to presume that a part of 2,4-DNB-G and
2,6-DNB-G excreted in bile and urine is derived from
parent glucuronides. As shown in Table 3, nine com-
pounds, including 2,4-DNBAl and 2,4-DNB-G, were
detected in the administration of 2,4-DNB-G,
whereas compounds detected in the administration
of 2,6-DNB-G were 2,6-DNB, 2A6NBA and 2,6-
DNB-G. The finding that 2,4-DNBAl is one of the
metabolites of 2,4-DNB-G indicates that 2,4-DNBAl
is produced by oxidation of 2,4-DNB formed in the
intestinal hydrolysis of 2,4-DNB-G (Fig. 3). The
metabolic pathway shown in Fig. 3 also suggests that
2,4-DAT which is a known hepatocarcinogen17,18) and

is also a mutagen6,19) is produced from 2A4NT and
its isomer (4A2NT) in the metabolism of 2,4-DNB-
G.

The excretion of 2A6NB itself was not seen in
the administration of 2,6-DNB-G, but 2A6NBA was
detected in the urine. This finding indicates that
2A6NB is a precursor of 2A6NBA and is produced
from 2,6-DNB in intestine (Fig. 4). In addition, the
finding that the biliary excretion of 2,6-DNB-G is
about 15.8% of the dose suggests that enterohepatic
circulation of 2,6-DNB occurs.

DISCUSSION

It has been shown that the biliary excretion of
2,4-DNBAl and 2,4-DNB-G in the administration
of 2,4-DNT (40 mg/kg) are about 0.1 and 35% of
the dose, respectively.4) When 2,4-DNB-G (90 mg/
kg) which corresponds to about 2.8 fold of the bil-
iary excretion (35%) was administered, the biliary
excretion of 2,4-DNBAl is about 1.0% of the dose
(Table 3). These findings indicate that the rate of 2,4-
DNBAl excreted in bile after dosing 2,4-DNB-G is
comparable to about four times of that of 2,4-DNBAl
excreted in bile after dosing 2,4-DNT. In addition,
the rate (about 1.0%) of biliary excretion of 2,4-
DNBAl (Table 3) is approximately equal to that
(about 1.1%) of biliary excretion of 2,4-DNBAl in
the administration of 2,4-DNB (40 mg/kg).20) There-
fore, it may be concluded that the production of 2,4-

Table 3. Amounts of Compounds Detected from Urine and Bile of Male Wistar Rats Dosed with 2,4-Dinitrobenzyl Glucuronide
(2,4-DNB-G) and 2,6-Dinitrobenzyl Glucuronide (2,6-DNB-G)

Percentage of the dose excreted in 24 h
Compound

Urine Bile

2,4-DNB-G

2,4-Dinitrobenzyl alcohol (2,4-DNB) 0.02 ± 0.01a) 0.10 ± 0.05

2,4-Dinitrobenzaldehyde (2,4-DNBAl) 0.05 ± 0.02 1.02 ± 0.42

4-Amino-2-nitrotoluene (4A2NT) 0.19 ± 0.05

2-Amino-4-nitrotoluene (2A4NT) 0.03 ± 0.01

4-Acetylamino-2-nitrobenzoic acid (4AA2NBA) 7.05 ± 3.60 0.39 ± 0.15

4-Acetylamino-2-aminobenzoic acid (4AA2ABA) 1.78 ± 0.62

4-Amino-2-nitrobenzyl alcohol (4A2NB) 0.04 ± 0.02 0.01 ± 0.01

2-Amino-4-nitrobenzyl alcohol (2A4NB) 0.03 ± 0.02 0.01 ± 0.01

2,4-DNB-G 3.44 ± 1.35 5.16 ± 1.76

2,6-DNB-G

2,6-Dinitrobenzyl alcohol (2,6-DNB) 0.01 ± 0.01 0.02 ± 0.02

2-Amino-6-nitrobenzoic acid (2A6NBA) 0.21 ± 0.19

2,6-DNB-G 2.21 ± 0.54 15.78 ± 5.74

a) Values are means ± S.D. for five rats.
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DNBAl in the metabolism of 2,4-DNT depends on
the secondary metabolism of 2,4-DNB-G rather than
the metabolism of 2,4-DNT itself. The preponder-
ance of secondary metabolism of 2,4-DNB-G in the
production of 2,4-DNBAl is at least partly because
the hepatic concentration of 2,4-DNB produced from
2,4-DNB-G is higher than that of 2,4-DNB produced
from 2,4-DNT. Since it is thought that the
lipophilicity of 2,4-DNT is greater than that of 2,4-
DNB with a benzylalcoholic group, the higher con-
centration of 2,4-DNB in liver may be because the
intestinal hydrolysis of 2,4-DNB-G surpasses the
hepatic oxidation of 2,4-DNT with respect to the
production of 2,4-DNB and/or the extent of intesti-
nal reduction of 2,4-DNB is lower than that of in-
testinal reduction of 2,4-DNT. Moreover, the meta-
bolic difference between hepatic oxidation of 2,4-
DNB to 2,4-DNBAl in the co-existence of intestinal
products from 2,4-DNB-G and hepatic oxidation of
2,4-DNT to 2,4-DNBAl in the co-existence of in-
testinal products from 2,4-DNT may also be respon-
sible for the preponderance of secondary metabo-
lism of 2,4-DNB-G in the production of 2,4-DNBAl.

The excretion of 2,4-DAT was not seen in the
administration of 2,4-DNB-G; however,
aminonitrotoluenes (2A4NT and 4A2NT) and
4AA2ABA were detected in the urine or bile
(Table 3). This finding suggests that 2,4-DAT is pro-
duced in the intestinal metabolism of 2,4-DNB-G
and is transported to liver (Fig. 3). The production
of 2,4-DAT from 2A4NT and 4A2NT was supported
from the observation that 2A4NT and 4A2NT are
metabolized to 2,4-DAT by anaerobic incubation

with rat intestinal contents20) and with rat cecal con-
tents.21) Since p-hydroxybenzyl alcohol and vanillyl
alcohol are metabolized to p-cresol and 4-
methylguiacol by rat intestinal microflora, respec-
tively,22) the reduction of 2A4NB and 4A2NB to
2A4NT and 4A2NT was also thought to be a rea-
sonable metabolic route. The excretion of 2,4-DAT
is not seen in the single administration of 2,4-DNT
(40 mg/kg),4) whereas 2,4-DAT is detected in the
urine of rats dosed with 2,4-DNT (25 mg/kg/d) for
6 d.23) Thus, it is suggested that the intestinal meta-
bolic route shown in Fig. 3, in addition to the intes-
tinal reduction of 2,4-DNT, may also play a role in
the production of 2,4-DAT after continuous dosing
of 2,4-DNT.

Kedderis et al.9) have proposed a hypothesis re-
lating to the hepatocarcinogenicity of 2,6-DNT in
male Fischer 344 rat. They have postulated that the
bioactivation of 2,6-DNT requires intestinal
deconjugation of glucuronide of 2,6-DNB (2,6-
DNB-G) to 2,6-DNB, intestinal reduction of 2,6-
DNB to aminonitrobenzyl alcohol (2A6NB), trans-
portation of 2A6NB to liver, and further metabo-
lism of 2A6NB to genotoxic compounds, including
hydroxylamino derivative of 2A6NB and its sulfate.
The finding that 2A6NBA which is a urinary me-
tabolite of 2,6-DNB-G (Table 3) is produced from
2A6NB in the intestinal metabolism of 2,6-DNB-G
(Fig. 4) provides evidence in support of their hypoth-
esis that 2,6-DNB-G excreted in bile is converted
into 2A6NB in intestine and 2A6NB formed in in-
testine is transported to liver. In addition, the find-
ing that the rates of biliary excretion of 2,6-DNB-G

Fig. 4. Proposed Metabolic Pathway of 2,6-Dinitrobenzyl
Glucuronide (2,6-DNB-G)

Arrow with broken line shows a possible absorption route of 2,6-
DNB-G. Bolder arrows show enterohepatic circulation of 2,6-
dinitrobenzyl alcohol (2,6-DNB).

Fig. 3. Proposed Metabolic Pathway of 2,4-Dinitrobenzyl
Glucuronide (2,4-DNB-G)

Arrow with broken line shows a possible absorption route of 2,4-
DNB-G.
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in the administration of 2,6-DNT (40 mg/kg) and 2,6-
DNB-G (90 mg/kg) was about 524) and 15.8% of the
dose (Table 3) indicates that enterohepatic circula-
tion of 2,6-DNB occurs in the metabolism of 2,6-
DNT, and further suggests that transportation of
2A6NB to liver (Fig. 4) is continual. Since a num-
ber of hepatocarcinogenic aromatic amines have
been shown to be metabolized to intermediates which
bind covalently to hepatic DNA,24,25) it is possible to
assume that a part of 2A6NB which is transported
to liver is converted into a hydroxylamino deriva-
tive of 2A6NB. The failure to detect the presumed
hydroxylamino compound may be due to its labil-
ity.

In conclusion, our results provide substantial
evidence that 2,4-DNBAl is produced by the sec-
ondary metabolism of 2,4-DNB-G formed in the me-
tabolism of 2,4-DNT and that the production of 2,4-
DNBAl depends more on the secondary metabolism
of 2,4-DNB-G than the metabolism of 2,4-DNT it-
self. We also showed that 2,4-DAT and 2A6NB are
produced in the secondary metabolism of 2,4-DNB-
G and 2,6-DNB-G, and are transported to liver. These
results provide important information for under-
standing the metabolic activation responsible for the
hepatocarcinogenicities of 2,4-DNT and 2,6-DNT
in rats.
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